Suppr超能文献

杂交向日葵物种中广泛的染色体重排与不育屏障的进化

Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species.

作者信息

Lai Zhao, Nakazato Takuya, Salmaso Marzia, Burke John M, Tang Shunxue, Knapp Steven J, Rieseberg Loren H

机构信息

Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

Genetics. 2005 Sep;171(1):291-303. doi: 10.1534/genetics.105.042242.

Abstract

New species may arise via hybridization and without a change in ploidy. This process, termed homoploid hybrid speciation, is theoretically difficult because it requires the development of reproductive barriers in sympatry or parapatry. Theory suggests that isolation may arise through rapid karyotypic evolution and/or ecological divergence of hybrid neospecies. Here, we investigate the role of karyotypic change in homoploid hybrid speciation by generating detailed genetic linkage maps for three hybrid sunflower species, Helianthus anomalus, H. deserticola, and H. paradoxus, and comparing these maps to those previously generated for the parental species, H. annuus and H. petiolaris. We also conduct a quantitative trait locus (QTL) analysis of pollen fertility in a BC2 population between the parental species and assess levels of pollen and seed fertility in all cross-combinations of the hybrid and parental species. The three hybrid species are massively divergent from their parental species in karyotype; gene order differences were observed for between 9 and 11 linkage groups (of 17 total), depending on the comparison. About one-third of the karyoypic differences arose through the sorting of chromosomal rearrangements that differentiate the parental species, but the remainder appear to have arisen de novo (six breakages/six fusions in H. anomalus, four breakages/three fusions in H. deserticola, and five breakages/five fusions in H. paradoxus). QTL analyses indicate that the karyotypic differences contribute to reproductive isolation. Nine of 11 pollen viability QTL occur on rearranged chromosomes and all but one map close to a rearrangement breakpoint. Finally, pollen and seed fertility estimates for F1's between the hybrid and parental species fall below 11%, which is sufficient for evolutionary independence of the hybrid neospecies.

摘要

新物种可能通过杂交产生,且无需改变倍性。这一过程被称为同倍体杂交物种形成,理论上具有难度,因为它需要在同域或邻域中形成生殖隔离。理论表明,隔离可能通过杂交新物种的快速核型进化和/或生态分化而产生。在此,我们通过为三种杂交向日葵物种(异常向日葵、沙漠向日葵和奇异向日葵)生成详细的遗传连锁图谱,并将这些图谱与先前为亲本物种(向日葵和叶柄向日葵)生成的图谱进行比较,来研究核型变化在同倍体杂交物种形成中的作用。我们还对亲本物种之间的一个回交二代群体进行了花粉育性的数量性状位点(QTL)分析,并评估了杂交物种与亲本物种所有杂交组合中的花粉和种子育性水平。这三种杂交物种在核型上与其亲本物种存在巨大差异;根据比较结果,在总共17个连锁群中,观察到9至11个连锁群存在基因顺序差异。约三分之一的核型差异是通过区分亲本物种的染色体重排的分选产生的,但其余差异似乎是重新产生的(异常向日葵中有6次断裂/6次融合,沙漠向日葵中有4次断裂/3次融合,奇异向日葵中有5次断裂/5次融合)。QTL分析表明,核型差异导致了生殖隔离。11个花粉活力QTL中有9个位于重排染色体上,除一个外,所有QTL都定位在靠近重排断点的位置。最后,杂交物种与亲本物种之间的F1代的花粉和种子育性估计值低于11%,这足以实现杂交新物种的进化独立性。

相似文献

1
3
Rapid hybrid speciation in wild sunflowers.
Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11757-62. doi: 10.1073/pnas.95.20.11757.
4
Crossing relationships among ancient and experimental sunflower hybrid lineages.
Evolution. 2000 Jun;54(3):859-65. doi: 10.1111/j.0014-3820.2000.tb00086.x.
6
The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species.
Am J Bot. 2009 Sep;96(9):1646-55. doi: 10.3732/ajb.0800337. Epub 2009 Aug 19.
7
Patterns of genetic diversity and candidate genes for ecological divergence in a homoploid hybrid sunflower, Helianthus anomalus.
Mol Ecol. 2007 Dec;16(23):5017-29. doi: 10.1111/j.1365-294X.2007.03557.x. Epub 2007 Oct 16.
8
Likely multiple origins of a diploid hybrid sunflower species.
Mol Ecol. 2002 Sep;11(9):1703-15. doi: 10.1046/j.1365-294x.2002.01557.x.
9
Comparative mapping and rapid karyotypic evolution in the genus helianthus.
Genetics. 2004 May;167(1):449-57. doi: 10.1534/genetics.167.1.449.
10
Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?
J Evol Biol. 2010 Apr;23(4):805-16. doi: 10.1111/j.1420-9101.2010.01950.x. Epub 2010 Feb 22.

引用本文的文献

1
Hybrid fertility and the rarity of homoploid hybrid speciation.
AoB Plants. 2025 Jun 26;17(4):plaf035. doi: 10.1093/aobpla/plaf035. eCollection 2025 Aug.
2
Chromosomal structural variation loci HSS1 and HSS6 lead to hybrid sterility in rice.
Theor Appl Genet. 2025 Apr 15;138(5):101. doi: 10.1007/s00122-025-04887-y.
5
Genomics of plant speciation.
Plant Commun. 2023 Sep 11;4(5):100599. doi: 10.1016/j.xplc.2023.100599. Epub 2023 Apr 11.
6
Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers.
Mol Biol Evol. 2023 Feb 3;40(2). doi: 10.1093/molbev/msad013.
8
The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in .
Front Plant Sci. 2022 Jun 23;13:907363. doi: 10.3389/fpls.2022.907363. eCollection 2022.
9
Hybrid evolution repeats itself across environmental contexts in Texas sunflowers (Helianthus).
Evolution. 2022 Jul;76(7):1512-1528. doi: 10.1111/evo.14536. Epub 2022 Jun 17.
10
Interspecific hybridization in tomato influences endogenous viral sRNAs and alters gene expression.
Genome Biol. 2022 May 21;23(1):120. doi: 10.1186/s13059-022-02685-z.

本文引用的文献

1
IRIS NELSONII (IRIDACEAE): ORIGIN AND GENETIC COMPOSITION OF A HOMOPLOID HYBRID SPECIES.
Am J Bot. 1993 May;80(5):577-583. doi: 10.1002/j.1537-2197.1993.tb13843.x.
2
PATTERNS OF MATING IN WILD SUNFLOWER HYBRID ZONES.
Evolution. 1998 Jun;52(3):713-726. doi: 10.1111/j.1558-5646.1998.tb03696.x.
3
GENETIC EVIDENCE FOR THE HYBRID ORIGIN OF THE DIPLOID PLANT STEPHANOMERIA DIEGENSIS.
Evolution. 1982 Nov;36(6):1158-1167. doi: 10.1111/j.1558-5646.1982.tb05486.x.
4
THE ESTABLISHMENT OF CHROMOSOMAL VARIANTS.
Evolution. 1981 Mar;35(2):322-332. doi: 10.1111/j.1558-5646.1981.tb04890.x.
7
Origin(s) of the diploid hybrid species Helianthus deserticola (Asteraceae).
Am J Bot. 2003 Dec;90(12):1708-19. doi: 10.3732/ajb.90.12.1708.
8
Speciation by monobrachial centric fusions.
Proc Natl Acad Sci U S A. 1986 Nov;83(21):8245-8. doi: 10.1073/pnas.83.21.8245.
9
Selection on leaf ecophysiological traits in a desert hybrid Helianthus species and early-generation hybrids.
Evolution. 2004 Dec;58(12):2682-92. doi: 10.1111/j.0014-3820.2004.tb01621.x.
10
The ecological genetics of homoploid hybrid speciation.
J Hered. 2005 May-Jun;96(3):241-52. doi: 10.1093/jhered/esi026. Epub 2004 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验