Suppr超能文献

分段光滑哈密顿系统中的吸引子盆

Basins of attraction in piecewise smooth Hamiltonian systems.

作者信息

Lai Ying-Cheng, He Da-Ren, Jiang Yu-Mei

机构信息

Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):025201. doi: 10.1103/PhysRevE.72.025201. Epub 2005 Aug 1.

Abstract

Piecewise smooth Hamiltonian systems arise in physical and engineering applications. For such a system typically an infinite number of quasi-periodic "attractors" coexist. (Here we use the term "attractors" to indicate invariant sets to which typically initial conditions approach, as a result of the piecewise smoothness of the underlying system. These "attractors" are therefore characteristically different from the attractors in dissipative dynamical systems.) We find that the basins of attraction of different "attractors" exhibit a riddled-like feature in that they mix with each other on arbitrarily fine scales. This practically prevents prediction of "attractors" from specific initial conditions and parameters. The mechanism leading to the complicated basin structure is found to be characteristically different from those reported previously for similar basin structure in smooth dynamical systems. We demonstrate the phenomenon using a class of electronic relaxation oscillators with voltage protection and provide a theoretical explanation.

摘要

分段光滑哈密顿系统出现在物理和工程应用中。对于这样一个系统,通常存在无限多个准周期“吸引子”共存。(在这里,我们使用“吸引子”一词来表示由于基础系统的分段光滑性,典型的初始条件通常会趋近的不变集。因此,这些“吸引子”与耗散动力系统中的吸引子有本质区别。)我们发现不同“吸引子”的吸引盆呈现出一种类似迷宫的特征,即它们在任意精细的尺度上相互混合。这实际上使得从特定的初始条件和参数预测“吸引子”变得不可能。导致复杂吸引盆结构的机制被发现与先前报道的光滑动力系统中类似吸引盆结构的机制有本质不同。我们使用一类具有电压保护的电子弛豫振荡器来演示这一现象,并给出理论解释。

相似文献

1
Basins of attraction in piecewise smooth Hamiltonian systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):025201. doi: 10.1103/PhysRevE.72.025201. Epub 2005 Aug 1.
3
Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 2):056214. doi: 10.1103/PhysRevE.78.056214. Epub 2008 Nov 24.
4
Unstable attractors induce perpetual synchronization and desynchronization.
Chaos. 2003 Mar;13(1):377-87. doi: 10.1063/1.1501274.
5
Catastrophic bifurcation from riddled to fractal basins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056228. doi: 10.1103/PhysRevE.64.056228. Epub 2001 Oct 26.
6
Limit of small exits in open Hamiltonian systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056201. doi: 10.1103/PhysRevE.67.056201. Epub 2003 May 1.
7
Prevalence of unstable attractors in networks of pulse-coupled oscillators.
Phys Rev Lett. 2002 Oct 7;89(15):154105. doi: 10.1103/PhysRevLett.89.154105. Epub 2002 Sep 23.
8
Intermittent control of coexisting attractors.
Philos Trans A Math Phys Eng Sci. 2013 May 20;371(1993):20120428. doi: 10.1098/rsta.2012.0428. Print 2013 Jun 28.
9
A simple population model with qualitatively uncertain dynamics.
J Theor Biol. 1997 Dec 21;189(4):399-411. doi: 10.1006/jtbi.1997.0258.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验