Suppr超能文献

耦合非线性薛定谔方程的稳定与不稳定矢量暗孤子:应用于双组分玻色 - 爱因斯坦凝聚体

Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: application to two-component Bose-Einstein condensates.

作者信息

Brazhnyi V A, Konotop V V

机构信息

Centro de Física Teórica e Computacional, Universidade de Lisboa, Complexo Interdisciplinar, Avenida Professor Gama Pinto 2, Lisboa 1649-003, Portugal.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026616. doi: 10.1103/PhysRevE.72.026616. Epub 2005 Aug 31.

Abstract

The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schrödinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed.

摘要

在耦合的一维非线性薛定谔(NLS)方程框架下,研究了双组分玻色 - 爱因斯坦凝聚体中矢量暗孤子的动力学。我们考虑小振幅极限,在此极限下耦合的NLS方程简化为耦合的科特韦格 - 德弗里斯(KdV)方程。对于特定的参数选择,所得到的耦合KdV方程是完全可积的。我们发现存在对应于声波两个分支的(慢和快)暗孤子的两个分支。对应于声波下分支的慢孤子似乎是不稳定的,并且在演化过程中会转变为稳定的快孤子(对应于色散定律的上分支)。对任意深度的矢量暗孤子进行了数值研究。结果表明,两个组分所受的有效不同的抛物线陷阱会导致孤子的不稳定性,导致其组分分裂并随后衰变。提出了一种描述磁阱中矢量暗孤子振荡的简单唯象理论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验