Kanso A, Chebbo G, Tassin B
Centre d'Enseignement et de Recherche Eau, Ville et Environnement, Ecole Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
Water Sci Technol. 2005;52(3):63-71.
Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low.
评估城市雨水水质模型中的不确定性水平对其应用至关重要。本文介绍了基于贝叶斯理论的蒙特卡罗马尔可夫链方法在现有软件中常用的雨水水质模型校准和不确定性分析中的应用结果。所测试的模型采用水文/水动力方案来估算地表和下水道中污染物的积累、侵蚀和传输。针对下水道沉积物的四种不同初始条件进行了校准。校准结果表明,模型响应随初始条件变化差异很大。结果表明该模型的预测能力非常低。