Suppr超能文献

Internal versus terminal metalation of double-helical oligodeoxyribonucleotides.

作者信息

Vinje Jo, Sletten Einar

机构信息

Centre of Pharmacy, Department of Chemistry, University of Bergen, Norway.

出版信息

Chemistry. 2006 Jan 11;12(3):676-88. doi: 10.1002/chem.200500731.

Abstract

The formation of adducts between cis-[Pt(NH(3))(2)Cl(2)], Zn(II), and Mn(II) and double-stranded oligodeoxynucleotides was studied by 1D and 2D (1)H, (31)P, and (15)N NMR spectroscopy. For labile adducts involving Zn(II) and Mn(II), both (1)H chemical shifts (Zn(II)) and (1)H line-broadening effects (Mn(II)) showed that in the hexamer d(GGCGCC) I, the terminal G(1)-N7 is the exclusive binding site, while for the dodecamer d(GGTACCGGTACC) II, which contains both a terminal and internal GG pair, the preference for metal binding is the internal guanine G(7). Zn(II) binding to II was confirmed by natural-abundance 2D [(1)H,(15)N] HMBC NMR spectroscopy, which unambiguously showed that G(7)-N7 is the preferred binding site. The long duplex d(GGTATATATACCGGTATATATACC) III was expected to have a more pronounced accumulation of electrostatic potential towards the central part of the sequence (vs the terminal part) than does II. However, the Zn(II) titration of III showed no increase in coordination with the internal Gs (vs the terminal Gs), compared with what was observed for II. The reaction between the nonlabile metal complex cis-[PtCl(2)((15)NH(3))(2)] (cisplatin) and II showed a slight preference for the internal GG pair over the terminal GG pair. However, when the diaqua form of cisplatin cis-[Pt((15)NH(3))(2)(H(2)O)(2)] was reacted with II a more pronounced binding preference for the internal GG pair was observed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验