Suppr超能文献

一种用于磁共振图像的软分割可视化方案。

A soft-segmentation visualization scheme for magnetic resonance images.

作者信息

Mehta Shashi Bhushan, Chaudhury Santanu, Bhattacharyya Asok, Jena Amarnath

机构信息

Institute of Nuclear Medicine and Allied Sciences, Timar pur, Delhi 110054, India.

出版信息

Magn Reson Imaging. 2005 Sep;23(7):817-28. doi: 10.1016/j.mri.2005.05.003. Epub 2005 Sep 8.

Abstract

Prevalent visualization tools exploit gray value distribution in images through modified histogram equalization and matching technique, referred to as the window width/window level-based method, to improve visibility and enhance diagnostic value. The window width/window level tool is extensively used in magnetic resonance (MR) images to highlight tissue boundaries during image interpretation. However, the identification of different regions and distinct boundaries between them based on gray-level distribution and displayed intensity levels is extremely difficult because of the large dynamic range of tissue intensities inherent in MR images. We propose a soft-segmentation visualization scheme to generate pixel partitions from the histogram of MR image data using a connectionist approach and then generate selective visual depictions of pixel partitions using pseudo color based on an appropriate fuzzy membership function. By applying the display scheme in clinical examples in this study, we could demonstrate additional overlapping regions between distinct tissue types in healthy and diseased areas (in the brain) that could help improve the tissue characterization ability of MR images.

摘要

现有的可视化工具通过改进的直方图均衡化和匹配技术利用图像中的灰度值分布,即基于窗宽/窗位的方法,来提高可视性并增强诊断价值。窗宽/窗位工具在磁共振(MR)图像解释中被广泛用于突出组织边界。然而,由于MR图像中组织强度固有的大动态范围,基于灰度分布和显示强度水平来识别不同区域及其之间的明显边界极其困难。我们提出一种软分割可视化方案,使用神经网络方法从MR图像数据的直方图生成像素分区,然后基于适当的模糊隶属函数使用伪彩色生成像素分区的选择性视觉描绘。通过在本研究的临床实例中应用该显示方案,我们能够证明在健康和患病区域(大脑中)不同组织类型之间存在额外的重叠区域,这有助于提高MR图像的组织特征化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验