Koike H, Shibata M, Yasutomi K, Kashino Y, Satoh K
Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Garden City, Hyogo, 678-1297, Japan,
Photosynth Res. 2000;65(3):207-17. doi: 10.1023/A:1010734912776.
Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive 'plastids', and the proteins related to PS I were examined. The intrinsic light-harvesting chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both 'green' lineages and cyanobacteria.