Vlasov Peter K, Vlasova Anna V, Tumanyan Vladimir G, Esipova Natalia G
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
Proteins. 2005 Dec 1;61(4):763-8. doi: 10.1002/prot.20670.
We describe a new method for polyproline II-type (PPII) secondary structure prediction based on tetrapeptide conformation properties using data obtained from all globular proteins in the Protein Data Bank (PDB). This is the first method for PPII prediction with a relatively high level of accuracy (approximately 60%). Our method uses only frequencies of different conformations among oligopeptides without any additional parameters. We also attempted to predict alpha-helices and beta-strands using the same approach. We find that the application of our method reveals interrelation between sequence and structure even for very short oligopeptides (tetrapeptides).
我们描述了一种基于四肽构象特性的聚脯氨酸II型(PPII)二级结构预测新方法,该方法使用从蛋白质数据库(PDB)中所有球状蛋白质获得的数据。这是第一种具有相对较高准确率(约60%)的PPII预测方法。我们的方法仅使用寡肽中不同构象的频率,无需任何额外参数。我们还尝试使用相同方法预测α螺旋和β链。我们发现,即使对于非常短的寡肽(四肽),应用我们的方法也能揭示序列与结构之间的相互关系。