Suppr超能文献

热休克蛋白90抑制的抗骨髓瘤活性

Antimyeloma activity of heat shock protein-90 inhibition.

作者信息

Mitsiades Constantine S, Mitsiades Nicholas S, McMullan Ciaran J, Poulaki Vassiliki, Kung Andrew L, Davies Faith E, Morgan Gareth, Akiyama Masaharu, Shringarpure Reshma, Munshi Nikhil C, Richardson Paul G, Hideshima Teru, Chauhan Dharminder, Gu Xuesong, Bailey Charles, Joseph Marie, Libermann Towia A, Rosen Neal S, Anderson Kenneth C

机构信息

Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston MA 02115, USA.

出版信息

Blood. 2006 Feb 1;107(3):1092-100. doi: 10.1182/blood-2005-03-1158. Epub 2005 Oct 18.

Abstract

We show that multiple myeloma (MM), the second most commonly diagnosed hematologic malignancy, is responsive to hsp90 inhibitors in vitro and in a clinically relevant orthotopic in vivo model, even though this disease does not depend on HER2/neu, bcr/abl, androgen or estrogen receptors, or other hsp90 chaperoning clients which are hallmarks of tumor types traditionally viewed as attractive clinical settings for use of hsp90 inhibitors, such as the geldanamycin analog 17-AAG. This class of agents simultaneously suppresses in MM cells the expression and/or function of multiple levels of insulin-like growth factor receptor (IGF-1R) and interleukin-6 receptor (IL-6R) signaling (eg, IKK/NF-kappaB, PI-3K/Akt, and Raf/MAPK) and downstream effectors (eg, proteasome, telomerase, and HIF-1alpha activities). These pleiotropic proapoptotic effects allow hsp90 inhibitors to abrogate bone marrow stromal cell-derived protection on MM tumor cells, and sensitize them to other anticancer agents, including cytotoxic chemotherapy and the proteasome inhibitor bortezomib. These results indicate that hsp90 can be targeted therapeutically in neoplasias that may not express or depend on molecules previously considered to be the main hsp90 client proteins. This suggests a more general role for hsp90 in chaperoning tumor- or tissue-type-specific constellations of client proteins with critical involvement in proliferative and antiapoptotic cellular responses, and paves the way for more extensive future therapeutic applications of hsp90 inhibition in diverse neoplasias, including MM.

摘要

我们发现,多发性骨髓瘤(MM)作为第二常见的血液系统恶性肿瘤,在体外以及临床相关的原位体内模型中对热休克蛋白90(hsp90)抑制剂有反应,尽管该疾病并不依赖于HER2/neu、bcr/abl、雄激素或雌激素受体,也不依赖于其他热休克蛋白90伴侣蛋白,而这些蛋白是传统上被视为使用hsp90抑制剂(如格尔德霉素类似物17-AAG)的有吸引力临床应用场景的肿瘤类型的标志。这类药物同时抑制MM细胞中胰岛素样生长因子受体(IGF-1R)和白细胞介素-6受体(IL-6R)信号传导的多个水平(如IKK/NF-κB、PI-3K/Akt和Raf/MAPK)的表达和/或功能以及下游效应器(如蛋白酶体、端粒酶和HIF-1α活性)。这些多效性促凋亡作用使hsp90抑制剂能够消除骨髓基质细胞对MM肿瘤细胞的保护作用,并使它们对其他抗癌药物敏感,包括细胞毒性化疗药物和蛋白酶体抑制剂硼替佐米。这些结果表明,在可能不表达或不依赖于先前被认为是主要热休克蛋白90伴侣蛋白的分子的肿瘤形成中,热休克蛋白90可以成为治疗靶点。这表明热休克蛋白90在伴侣肿瘤或组织类型特异性的客户蛋白组合方面具有更广泛的作用,这些蛋白组合在增殖和抗凋亡细胞反应中起关键作用,并为热休克蛋白90抑制在包括MM在内的多种肿瘤形成中的更广泛未来治疗应用铺平了道路。

相似文献

1
Antimyeloma activity of heat shock protein-90 inhibition.
Blood. 2006 Feb 1;107(3):1092-100. doi: 10.1182/blood-2005-03-1158. Epub 2005 Oct 18.
6
ATP analog enhances the actions of a heat shock protein 90 inhibitor in multiple myeloma cells.
J Pharmacol Exp Ther. 2011 Nov;339(2):545-54. doi: 10.1124/jpet.111.184903. Epub 2011 Aug 5.
8
Heat shock protein 90-sheltered overexpression of insulin-like growth factor 1 receptor contributes to malignancy of thymic epithelial tumors.
Clin Cancer Res. 2011 Apr 15;17(8):2237-49. doi: 10.1158/1078-0432.CCR-10-1689. Epub 2011 Mar 3.

引用本文的文献

1
The Role of c‑Jun Signaling in Cytidine Analog-Induced Cell Death in Melanoma.
ACS Omega. 2025 Jul 17;10(29):31776-31788. doi: 10.1021/acsomega.5c02807. eCollection 2025 Jul 29.
3
Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer.
Cancer Cell Int. 2022 Dec 28;22(1):419. doi: 10.1186/s12935-022-02815-4.
4
Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche.
Front Oncol. 2022 Sep 21;12:973836. doi: 10.3389/fonc.2022.973836. eCollection 2022.
5
Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy.
Cells. 2022 Aug 17;11(16):2556. doi: 10.3390/cells11162556.
6
FOXM1 regulates glycolysis and energy production in multiple myeloma.
Oncogene. 2022 Aug;41(32):3899-3911. doi: 10.1038/s41388-022-02398-4. Epub 2022 Jul 6.
7
Drug resistance and minimal residual disease in multiple myeloma.
Cancer Drug Resist. 2022 Feb 16;5(1):171-183. doi: 10.20517/cdr.2021.116. eCollection 2022.
8
Studies on Preformulation and Formulation of JIN-001 Liquisolid Tablet with Enhanced Solubility.
Pharmaceuticals (Basel). 2022 Mar 28;15(4):412. doi: 10.3390/ph15040412.
9
ZHX2 mediates proteasome inhibitor resistance via regulating nuclear translocation of NF-κB in multiple myeloma.
Cancer Med. 2020 Oct;9(19):7244-7252. doi: 10.1002/cam4.3347. Epub 2020 Aug 11.
10
Multiple Myeloma: Available Therapies and Causes of Drug Resistance.
Cancers (Basel). 2020 Feb 10;12(2):407. doi: 10.3390/cancers12020407.

本文引用的文献

4
Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer.
J Clin Oncol. 2005 Feb 20;23(6):1078-87. doi: 10.1200/JCO.2005.09.119.
5
Population pharmacokinetic analysis of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) in adult patients with advanced malignancies.
Cancer Chemother Pharmacol. 2005 Mar;55(3):237-43. doi: 10.1007/s00280-004-0836-8. Epub 2004 Oct 19.
6
Hsp90 invades the outside.
Nat Cell Biol. 2004 Jun;6(6):479-80. doi: 10.1038/ncb0604-479.
7
Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness.
Nat Cell Biol. 2004 Jun;6(6):507-14. doi: 10.1038/ncb1131. Epub 2004 May 16.
9
Advances in biology of multiple myeloma: clinical applications.
Blood. 2004 Aug 1;104(3):607-18. doi: 10.1182/blood-2004-01-0037. Epub 2004 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验