Suppr超能文献

从体外数据预测体内药物相互作用:纳入药物消除平行途径和抑制剂吸收速率常数的影响。

Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant.

作者信息

Brown Hayley S, Ito Kiyomi, Galetin Aleksandra, Houston J Brian

机构信息

School of Pharmacy & Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK.

出版信息

Br J Clin Pharmacol. 2005 Nov;60(5):508-18. doi: 10.1111/j.1365-2125.2005.02483.x.

Abstract

AIMS

Success of the quantitative prediction of drug-drug interactions via inhibition of CYP-mediated metabolism from the inhibitor concentration at the enzyme active site ([I]) and the in vitro inhibition constant (K(i)) is variable. The aim of this study was to examine the impact of the fraction of victim drug metabolized by a particular CYP (f(mCYP)) and the inhibitor absorption rate constant (k(a)) on prediction accuracy.

METHODS

Drug-drug interaction studies involving inhibition of CYP2C9, CYP2D6 and CYP3A4 (n = 115) were investigated. Data on f(mCYP) for the probe substrates of each enzyme and k(a) values for the inhibitors were incorporated into in vivo predictions, alone or in combination, using either the maximum hepatic input or the average systemic plasma concentration as a surrogate for [I]. The success of prediction (AUC ratio predicted within twofold of in vivo value) was compared using nominal values of f(mCYP) = 1 and k(a) = 0.1 min(-1).

RESULTS

The incorporation of f(mCYP) values into in vivo predictions using the hepatic input plasma concentration resulted in 84% of studies within twofold of in vivo value. The effect of k(a) values alone significantly reduced the number of over-predictions for CYP2D6 and CYP3A4; however, less precision was observed compared with the f(mCYP). The incorporation of both f(mCYP) and k(a) values resulted in 81% of studies within twofold of in vivo value.

CONCLUSIONS

The incorporation of substrate and inhibitor-related information, namely f(mCYP) and k(a), markedly improved prediction of 115 interaction studies with CYP2C9, CYP2D6 and CYP3A4 in comparison with [I]/K(i) ratio alone.

摘要

目的

通过酶活性位点抑制剂浓度([I])和体外抑制常数(K(i))对细胞色素P450(CYP)介导的代谢抑制作用来定量预测药物相互作用,其成功率存在差异。本研究旨在探讨特定CYP代谢的受影响药物分数(f(mCYP))和抑制剂吸收速率常数(k(a))对预测准确性的影响。

方法

对涉及CYP2C9、CYP2D6和CYP3A4抑制作用的药物相互作用研究(n = 115)进行了调查。将每种酶的探针底物的f(mCYP)数据和抑制剂的k(a)值单独或组合纳入体内预测,使用最大肝输入或平均全身血浆浓度作为[I]的替代指标。使用f(mCYP) = 1和k(a) = 0.1 min(-1)的标称值比较预测成功率(预测的AUC比值在体内值的两倍范围内)。

结果

使用肝输入血浆浓度将f(mCYP)值纳入体内预测时,84%的研究预测值在体内值的两倍范围内。单独的k(a)值的影响显著减少了CYP2D6和CYP3A4的过度预测数量;然而,与f(mCYP)相比,观察到的精度较低。同时纳入f(mCYP)和k(a)值时,81%的研究预测值在体内值的两倍范围内。

结论

与单独的[I]/K(i)比值相比,纳入底物和抑制剂相关信息,即f(mCYP)和k(a),显著改善了对115项CYP2C9、CYP2D6和CYP3A4相互作用研究的预测。

相似文献

3
Database analyses for the prediction of in vivo drug-drug interactions from in vitro data.
Br J Clin Pharmacol. 2004 Apr;57(4):473-86. doi: 10.1111/j.1365-2125.2003.02041.x.
4
In vitro modulatory effects on three major human cytochrome P450 enzymes by multiple active constituents and extracts of Centella asiatica.
J Ethnopharmacol. 2010 Jul 20;130(2):275-83. doi: 10.1016/j.jep.2010.05.002. Epub 2010 May 8.
7
In vitro and in vivo assessment of the effect of dalcetrapib on a panel of CYP substrates.
Curr Med Res Opin. 2009 Apr;25(4):891-902. doi: 10.1185/03007990902790928.
8
Inhibitory effects of gypenosides on seven human cytochrome P450 enzymes in vitro.
Food Chem Toxicol. 2013 Jul;57:262-5. doi: 10.1016/j.fct.2013.03.041. Epub 2013 Apr 9.
9
Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9.
Drug Metab Dispos. 2001 Nov;29(11):1359-61.

引用本文的文献

2
Clinical Trial Data-Driven Risk Assessment of Drug-Drug Interactions: A Rapid and Accurate Decision-Making Tool.
Clin Pharmacokinet. 2024 Aug;63(8):1147-1165. doi: 10.1007/s40262-024-01404-0. Epub 2024 Aug 5.
7
Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions.
Pharmacol Ther. 2020 Feb;206:107449. doi: 10.1016/j.pharmthera.2019.107449. Epub 2019 Dec 11.
8
Leveraging genetic interactions for adverse drug-drug interaction prediction.
PLoS Comput Biol. 2019 May 24;15(5):e1007068. doi: 10.1371/journal.pcbi.1007068. eCollection 2019 May.
10
Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.
Mol Pharm. 2018 May 7;15(5):1979-1995. doi: 10.1021/acs.molpharmaceut.8b00129. Epub 2018 Apr 10.

本文引用的文献

1
'In silico' simulations to assess the 'in vivo' consequences of 'in vitro' metabolic drug-drug interactions.
Drug Discov Today Technol. 2004 Dec;1(4):441-8. doi: 10.1016/j.ddtec.2004.10.002.
3
CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions.
J Pharmacol Exp Ther. 2005 Jul;314(1):180-90. doi: 10.1124/jpet.104.082826. Epub 2005 Mar 22.
4
Role of itraconazole metabolites in CYP3A4 inhibition.
Drug Metab Dispos. 2004 Oct;32(10):1121-31. doi: 10.1124/dmd.104.000315. Epub 2004 Jul 8.
5
Database analyses for the prediction of in vivo drug-drug interactions from in vitro data.
Br J Clin Pharmacol. 2004 Apr;57(4):473-86. doi: 10.1111/j.1365-2125.2003.02041.x.
6
Reaction phenotyping in drug discovery: moving forward with confidence?
Curr Drug Metab. 2003 Dec;4(6):527-34. doi: 10.2174/1389200033489235.
8
Inhibition-based metabolic drug-drug interactions: predictions from in vitro data.
J Pharm Sci. 2002 Sep;91(9):1923-35. doi: 10.1002/jps.10179.
9
Sense and nonsense in the prediction of drug-drug interactions.
Curr Drug Metab. 2000 Dec;1(4):305-31. doi: 10.2174/1389200003338947.
10
Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential--towards a consensus.
Br J Clin Pharmacol. 2001 Jul;52(1):107-17. doi: 10.1046/j.0306-5251.2001.temp.1441.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验