Walker Andrew M, Gale Julian D, Slater Ben, Wright Kate
Davy Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London, UK W1S 4BS.
Phys Chem Chem Phys. 2005 Sep 7;7(17):3227-34. doi: 10.1039/b505612h. Epub 2005 Aug 3.
Dislocations influence many properties of crystalline solids, including plastic deformation, growth and dissolution, diffusion and the formation of polytypes. Some of these processes can be described using continuum methods but this approach fails when a description of the structure of the core is required. To progress in these types of problems, an atomic scale model is essential. So far, atomic scale modelling of the cores of dislocations has been limited to systems with rather simple crystal structures. In this article, we describe modifications to current methodology, which have been used for strongly ionic materials with simple structures. These modifications permit the study of dislocation cores in more structurally complex materials.
位错会影响晶体固体的许多性质,包括塑性变形、生长与溶解、扩散以及多型体的形成。其中一些过程可以用连续介质方法来描述,但当需要描述位错核心的结构时,这种方法就失效了。要解决这类问题,原子尺度模型至关重要。到目前为止,位错核心的原子尺度建模仅限于具有相当简单晶体结构的系统。在本文中,我们描述了对当前方法的改进,这些方法已用于结构简单的强离子材料。这些改进使得能够研究结构更复杂材料中的位错核心。