Marian Christel, Nolting Dirk, Weinkauf Rainer
Institut für Theoretische Chemie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany.
Phys Chem Chem Phys. 2005 Sep 21;7(18):3306-16. doi: 10.1039/b507422c. Epub 2005 Aug 11.
In this work we present the results of a combined experimental and theoretical study concerned with the question how a proton changes the electronic spectrum and dynamics of adenine. In the experimental part, isolated adenine ions have been formed by electro-spray ionisation, stored, mass-selected and cooled in a Paul trap and dissociated by resonant photoexcitation with ns UV laser pulses. The S(0)-S1 spectrum of protonated adenine recorded by fragment ion detection lies in a similar energy range as the first pipi* transition of neutral 9H-adenine. It shows a flat onset with a broad substructure, indicating a large S(0)-S1 geometry shift and an ultra-short lifetime. In the theoretical part, relative energies of the ground and the excited states of the most important tautomers have been calculated by means of a combined density functional theory and multi-reference configuration interaction approach. Protonation at the nitrogen in position 1 of the neutral 9H-adenine tautomer yields the most stable protonated adenine species, 1H-9H-A+. The 3H-7H-A+ and the 3H-9H-A+ tautomers, formed by protonation of 7H- and 9H-adenine in 3-position, are higher in energy by 162 cm(-1) and 688 cm(-1), respectively. Other tautomers lie at considerably higher energies. Calculated vertical absorption spectra are reported for all investigated tautomers whereas geometry optimisations of excited states have been carried out only for the most interesting ones. The S1 state energies and geometries are found to depend on the protonation site. The theoretical data match best with the experimental onset of the spectrum for the 1H-9H-A+ tautomer although we cannot definitely exclude contributions to the experimental spectrum from the 3H-7H-A+ tautomer at higher energies. The vertical S(0)--> S1 excitation energy is similar to the one in neutral 9H-adenine. As for the neutral adenine, we find a conical intersection of the S1 of protonated adenine with the ground state in an out-of-plane coordinate but at lower energies and accessible without barrier.
在这项工作中,我们展示了一项结合实验与理论研究的结果,该研究关注质子如何改变腺嘌呤的电子光谱和动力学。在实验部分,通过电喷雾电离形成了孤立的腺嘌呤离子,将其存储在保罗阱中,进行质量选择和冷却,并用纳秒紫外激光脉冲通过共振光激发使其解离。通过碎片离子检测记录的质子化腺嘌呤的S(0)-S1光谱与中性9H-腺嘌呤的首个ππ*跃迁处于相似的能量范围。它呈现出一个平缓的起始部分以及一个宽泛的子结构,表明S(0)-S1几何结构发生了较大变化且寿命极短。在理论部分,借助密度泛函理论和多参考组态相互作用方法计算了最重要互变异构体的基态和激发态的相对能量。中性9H-腺嘌呤互变异构体1位氮原子上的质子化产生了最稳定的质子化腺嘌呤物种,即1H-9H-A+。由3位的7H-和9H-腺嘌呤质子化形成的3H-7H-A+和3H-9H-A+互变异构体,能量分别高出162 cm(-1)和688 cm(-1)。其他互变异构体的能量则高得多。报告了所有研究互变异构体的计算垂直吸收光谱,而仅对最有趣的互变异构体进行了激发态的几何结构优化。发现S1态能量和几何结构取决于质子化位点。理论数据与1H-9H-A+互变异构体光谱的实验起始部分匹配最佳,尽管我们不能完全排除能量较高时3H-7H-A+互变异构体对实验光谱的贡献。垂直S(0)→S1激发能与中性9H-腺嘌呤中的相似。对于中性腺嘌呤,我们发现在面外坐标中质子化腺嘌呤的S1与基态存在一个锥形交叉点,但能量较低且无障碍可达。