Suppr超能文献

九种模式分类器的实证比较。

An empirical comparison of nine pattern classifiers.

作者信息

Tran Quoc-Long, Toh Kar-Ann, Srinivasan Dipti, Wong Kok-Leong, Low Shaun Qiu-Cen

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):1079-91. doi: 10.1109/tsmcb.2005.847745.

Abstract

There are many learning algorithms available in the field of pattern classification and people are still discovering new algorithms that they hope will work better. Any new learning algorithm, beside its theoretical foundation, needs to be justified in many aspects including accuracy and efficiency when applied to real life problems. In this paper, we report the empirical comparison of a recent algorithm RM, its new extensions and three classical classifiers in different aspects including classification accuracy, computational time and storage requirement. The comparison is performed in a standardized way and we believe that this would give a good insight into the algorithm RM and its extension. The experiments also show that nominal attributes do have an impact on the performance of those compared learning algorithms.

摘要

模式分类领域有许多可用的学习算法,人们仍在不断发现他们希望能有更好效果的新算法。任何新的学习算法,除了其理论基础外,在应用于实际问题时,还需要在包括准确性和效率在内的许多方面得到验证。在本文中,我们报告了一种最新算法RM及其新扩展与三种经典分类器在不同方面(包括分类准确性、计算时间和存储需求)的实证比较。比较以标准化方式进行,我们相信这将有助于深入了解算法RM及其扩展。实验还表明,标称属性确实会对那些被比较的学习算法的性能产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验