Krekhov A P, Kramer L
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031705. doi: 10.1103/PhysRevE.72.031705. Epub 2005 Sep 15.
We study theoretically the slow director precession and nonlinear waves observed in homeotropically oriented nematic liquid crystals subjected to circular or elliptical Couette and Poiseuille flow and an electric field. From a linear analysis of the nematodynamic equations it is found that in the presence of the flow the electric bend Fréedericksz transition is transformed into a Hopf-type bifurcation. In the framework of an approximate weakly nonlinear analysis we have calculated the coefficients of the modified complex Ginzburg-Landau equation, which slightly above onset describes nonlinear waves with strong nonlinear dispersion. We also derive the equation describing the precession and waves well above the Fréedericksz transition and for small flow amplitudes. Then the nonlinear waves are of diffusive nature. The results are compared with full numerical simulations and with experimental data.
我们从理论上研究了在垂直取向的向列型液晶中,当受到圆形或椭圆形库埃特流、泊肃叶流以及电场作用时所观察到的慢指向矢进动和非线性波。通过对向列动力学方程的线性分析发现,在有流动存在的情况下,电弯曲弗雷德里克斯转变会转变为霍普夫型分岔。在近似弱非线性分析的框架下,我们计算了修正的复金兹堡 - 朗道方程的系数,该方程在略高于阈值时描述具有强非线性色散的非线性波。我们还推导了描述在弗雷德里克斯转变之上且流动幅度较小时的进动和波的方程。此时非线性波具有扩散性质。我们将结果与全数值模拟以及实验数据进行了比较。