Bergeron Lucien Junior, Reymond Cédric, Perreault Jean-Pierre
RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Universitéde Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.
RNA. 2005 Dec;11(12):1858-68. doi: 10.1261/rna.2112705. Epub 2005 Oct 26.
Molecular engineering has led to the development of a novel target-dependent riboswitch that increases deltaribozyme fidelity. This delta ribozyme possesses a specific on/off adapter (SOFA) that switches the cleavage activity from off (a "safety lock") to on solely in the presence of the desired RNA substrate. In this report, we investigate the influence of both the structure and the sequence of each domain of the SOFA module. Analysis of the cleavage activity, using a large collection of substrates and SOFA-ribozyme mutants, together with RNase H probing provided several insights into the nature of the sequence and the optimal design of each domain of the SOFA module. For example, we determined that (1) the optimal size of the blocker sequence, which keeps the ribozyme off in the absence of the substrate, is 4 nucleotides (nt); (2) a single nucleotide difference between the substrate and the biosensor domain, which is responsible for the initial binding of the substrate that subsequently switches the SOFA-ribozyme on, is sufficient to cause non-recognition of the appropriate substrate; (3) the stabilizer, which joins the 5' and 3' ends of the SOFA-ribozyme, plays only a structural role; and (4) the optimal spacer sequence, which serves to separate the binding regions of the biosensor and catalytic domain of the ribozyme on the substrate, is from 1 to 5 nt long. Together, these data should facilitate the design of more efficient SOFA-ribozymes with significant potential for many applications in gene-inactivation systems.
分子工程学已促成一种新型的靶标依赖性核酶开关的开发,该开关提高了δ核酶的保真度。这种δ核酶拥有一种特定的开/关衔接子(SOFA),仅在所需RNA底物存在时,它能将切割活性从关闭状态(“安全锁”)切换到开启状态。在本报告中,我们研究了SOFA模块各结构域的结构和序列的影响。利用大量底物和SOFA-核酶突变体分析切割活性,并结合RNase H探测,为SOFA模块各结构域的序列性质和最佳设计提供了几点见解。例如,我们确定:(1)在没有底物时使核酶保持关闭状态的阻断序列的最佳长度为4个核苷酸(nt);(2)底物与生物传感器结构域之间的单个核苷酸差异足以导致无法识别合适的底物,生物传感器结构域负责底物的初始结合,随后开启SOFA-核酶;(3)连接SOFA-核酶5'和3'末端的稳定剂仅起结构作用;(4)用于分隔核酶在底物上的生物传感器和催化结构域结合区域的最佳间隔序列长度为1至5 nt。总之,这些数据应有助于设计更高效的SOFA-核酶,在基因失活系统的许多应用中具有巨大潜力。