Norton Dean, Zheng Jack, Danielson Neil D, Shamsi Shahab A
Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA.
Anal Chem. 2005 Nov 1;77(21):6874-86. doi: 10.1021/ac050838a.
This work describes the on-line hyphenation of a packed capillary electrochromatography (CEC) column with an internally tapered tip coupled to electrospray ionization-mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) for the analysis of betaine-type amphoteric or zwitterionic surfactants (Zwittergent). A systematic investigation of the CEC separation and MS detection parameters comparing ESI and APCI is shown. First, a detailed and optimized manufacturing procedure for fabrication of the CEC-MS column with a reproducible internally tapered tip (7-9 microm) is presented. Next, the optimization of the separation parameters by varying the C(18) stationary-phase particle size (3 versus 1.5 microm), as well as mobile-phase composition including acetonitrile (ACN) volume fraction, ionic strength, and pH is described. The optimized separation is achieved using 3-microm C(18) packing with 75% ACN (v/v), 5 mM Tris at pH 8.0. Optimization for on-line CEC-ESI-MS detection is then done varying both the sheath liquid and spray chamber parameters while evaluating the use of random versus structured factorial table experimental designs. The more structured approach allows fundamental analysis of individual ESI-MS parameters while minimizing CEC and MS equilibration time between settings. A comparison of CEC-ESI-MS to CEC-APCI-MS using similar sheath and spray chamber conditions presents new insight for coupling of CEC to APCI-MS. The sheath liquid flow rate required to maintain adequate sensitivity is much higher in APCI source (50 microL/min) as compared to the ESI source (3 microL/min). The on-line mass spectra obtained in the full scan mode show that fragmentation in the two sources occurs at different positions on the Zwittergent molecules. For ESI-MS, the protonated molecular ion is always highest in abundance with minor fragmentation occurring due to the loss of the alkyl chain. In contrast, the APCI-MS spectra show that the highest abundant ion resulted by elimination of propane sulfonate from the Zwittergent molecule. A comparison of the sensitivity between the two sources in positive ionization SIM mode shows that CEC-ESI-MS provides an impressive limit of detection (LOD) of 5 ng/mL, which is at least 3 orders of magnitude lower than CEC-APCI-MS (LOD 100 microg/mL). Finally, the optimized CEC-MS methods comparing ESI and APCI are applied for separation and structural characterization of a real industrial zwittergent sample, Rewoteric AM CAS.
本工作描述了一种填充毛细管电色谱(CEC)柱与电喷雾电离质谱(ESI-MS)和大气压化学电离质谱(APCI-MS)联用的在线联用技术,用于分析甜菜碱型两性或两性离子表面活性剂(两性离子去污剂)。展示了对CEC分离和MS检测参数进行的系统研究,比较了ESI和APCI。首先,介绍了一种详细且优化的制造工艺,用于制造具有可重现的内部锥形尖端(7 - 9微米)的CEC-MS柱。接下来,描述了通过改变C(18)固定相粒径(3微米对1.5微米)以及流动相组成(包括乙腈(ACN)体积分数、离子强度和pH)来优化分离参数。使用3微米的C(18)填料、75% ACN(v/v)、pH 8.0的5 mM Tris实现了优化分离。然后对在线CEC-ESI-MS检测进行优化,改变鞘液和喷雾室参数,同时评估使用随机与结构化析因表实验设计。更结构化的方法允许对各个ESI-MS参数进行基础分析,同时最小化设置之间的CEC和MS平衡时间。在相似的鞘液和喷雾室条件下,将CEC-ESI-MS与CEC-APCI-MS进行比较,为CEC与APCI-MS的联用提供了新的见解。与ESI源(3微升/分钟)相比,APCI源维持足够灵敏度所需的鞘液流速要高得多(50微升/分钟)。在全扫描模式下获得的在线质谱表明,两种源中的碎裂发生在两性离子去污剂分子的不同位置。对于ESI-MS,质子化分子离子的丰度总是最高,由于烷基链的损失会发生少量碎裂。相比之下,APCI-MS谱图表明,最高丰度离子是由两性离子去污剂分子中丙烷磺酸盐的消除产生的。在正离子SIM模式下对两种源的灵敏度进行比较表明,CEC-ESI-MS提供了令人印象深刻的5纳克/毫升的检测限(LOD),比CEC-APCI-MS(LOD 100微克/毫升)至少低3个数量级。最后,将比较ESI和APCI的优化CEC-MS方法应用于实际工业两性离子去污剂样品Rewoteric AM CAS的分离和结构表征。