Ferreiro Diego U, Cho Samuel S, Komives Elizabeth A, Wolynes Peter G
Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
J Mol Biol. 2005 Dec 2;354(3):679-92. doi: 10.1016/j.jmb.2005.09.078. Epub 2005 Oct 13.
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.
由重复氨基酸基序组成的蛋白质在所有生命王国中都很丰富,尤其是在高等真核生物中。含重复序列的蛋白质会自组装成细长的非球状结构。那些支配球状结构域折叠的一般基本原理是否也适用于这些扩展的拓扑结构呢?我们使用一个基于结构的简化模型,该模型捕捉了一个完美的漏斗状能量景观,来探究含锚蛋白重复序列的蛋白质的预测折叠机制。锚蛋白家族是研究最为广泛的非球状折叠类别之一。仅基于天然接触的模型再现了关于这些蛋白质折叠的大部分实验观察结果,包括一种让人联想到成核-传播-生长的折叠机制。模拟结果与实验结果的融合表明,非球状蛋白质的折叠可以通过漏斗状能量景观准确描述,其中拓扑结构在折叠机制中起决定性作用。