Maris Ann E, Kaczor-Grzeskowiak Maria, Ma Zhongcai, Kopka Mary L, Gunsalus Robert P, Dickerson Richard E
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Biochemistry. 2005 Nov 8;44(44):14538-52. doi: 10.1021/bi050734u.
NarL is a model response regulator for bacterial two-component signal transduction. The NarL C-terminal domain DNA binding domain alone (NarL(C)) contains all essential DNA binding determinants of the full-length NarL transcription factor. In the full-length NarL protein, the N-terminal regulatory domain must be phosphorylated to release the DNA binding determinants; however, the first NarL(C)-DNA cocrystal structure showed that dimerization of NarL(C) on DNA occurs in a manner independent of the regulatory domain [Maris, A. E., et al. (2002) Nat. Struct. Biol. 9, 771-778]. Dimerization via the NarL(C) C-terminal helix conferred high-affinity recognition of the tail-to-tail promoter site arrangement. Here, two new cocrystal structures are presented of NarL(C) complexed with additional 20mer oligonucleotides representative of other high-affinity tail-to-tail NarL binding sites found in upstream promoter regions. DNA structural recognition properties are described, such as backbone flexibility and groove width, that facilitate NarL(C) dimerization and high-affinity recognition. Lys 188 on the recognition helix accommodates DNA sequence variation between the three different cocomplexes by providing flexible specificity, recognizing the DNA major groove floor directly and/or via bridging waters. The highly conserved Val 189, which enforced significant DNA base distortion in the first cocrystal structure, enforces similar distortions in the two new cocrystal structures. Recognition also is conserved for Lys 192, which hydrogen bonds to guanines at regions of high DNA helical writhe. DNA affinity measurements for model NarL binding sites, including those that did not cocrystallize, suggest a framework for explaining the diversity of heptamer site arrangement and orientation.
NarL是细菌双组分信号转导的典型应答调节因子。仅NarL的C末端结构域DNA结合结构域(NarL(C))就包含全长NarL转录因子的所有必需DNA结合决定簇。在全长NarL蛋白中,N末端调节结构域必须被磷酸化才能释放DNA结合决定簇;然而,首个NarL(C)-DNA共晶体结构表明,NarL(C)在DNA上的二聚化以一种独立于调节结构域的方式发生[Maris, A. E.等人(2002年)《自然结构生物学》9卷,771 - 778页]。通过NarL(C)的C末端螺旋进行二聚化赋予了对尾对尾启动子位点排列的高亲和力识别。在此,展示了NarL(C)与另外20聚体寡核苷酸形成的两种新的共晶体结构,这些寡核苷酸代表在上游启动子区域发现的其他高亲和力尾对尾NarL结合位点。描述了有助于NarL(C)二聚化和高亲和力识别的DNA结构识别特性,如主链柔韧性和沟宽。识别螺旋上的赖氨酸188通过提供灵活的特异性来适应三种不同共复合物之间的DNA序列变化,直接和/或通过桥连水识别DNA大沟底部。高度保守的缬氨酸189在首个共晶体结构中导致了显著的DNA碱基扭曲,在这两种新的共晶体结构中也导致了类似的扭曲。赖氨酸192的识别也具有保守性,它在DNA螺旋扭曲度高的区域与鸟嘌呤形成氢键。对模型NarL结合位点的DNA亲和力测量,包括那些未形成共晶体的位点,为解释七聚体位点排列和方向的多样性提供了一个框架。