Suppr超能文献

通过数字荧光差异显示对p53靶基因进行饱和筛选。

Saturation screening for p53 target genes by digital fluorescent differential display.

作者信息

Cho Yong-jig, Stein Susanne, Jackson Roger S, Liang Peng

机构信息

Department of Cell Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.

出版信息

Methods Mol Biol. 2006;317:179-92. doi: 10.1385/1-59259-968-0:179.

Abstract

Differential display (DD) is one of the most commonly used approaches for identifying differentially expressed genes. Despite the great impact of the method on biomedical research, there has been a lack of automation of DD technology to increase its throughput and accuracy for a systematic gene expression analysis. Most of previous DD work has taken a "shotgun" approach of identifying one gene at a time, with limited polymerase chain reaction (PCR) reactions set up manually, giving DD a low-technology and low-throughput image. With our newly created DD mathematical model, which has been validated by computer simulations, global analysis of gene expression by DD technology is no longer a shot in the dark. After identifying the "rate-limiting" factors that contribute to the "noise" level of DD method, we have optimized the DD process with a new platform that incorporates fluorescent digital readout and automated liquid handling. The resulting streamlined fluorescent DD (FDD) technology offers an unprecedented accuracy, sensitivity, and throughput in comprehensive and quantitative analysis of gene expression. We are using this newly integrated FDD technology to conduct a systematic and comprehensive screening for p53 tumor-suppressor gene targets.

摘要

差异显示(DD)是用于鉴定差异表达基因的最常用方法之一。尽管该方法对生物医学研究有重大影响,但DD技术一直缺乏自动化,以提高其通量和准确性,用于系统的基因表达分析。以前的大多数DD工作都采用“霰弹枪”方法,即一次鉴定一个基因,手动设置有限的聚合酶链反应(PCR),使DD呈现出低技术和低通量的形象。利用我们新创建的已通过计算机模拟验证的DD数学模型,通过DD技术对基因表达进行全局分析不再是盲目尝试。在确定导致DD方法“噪声”水平的“限速”因素后,我们用一个结合了荧光数字读数和自动液体处理的新平台优化了DD过程。由此产生的简化荧光DD(FDD)技术在基因表达的综合定量分析中提供了前所未有的准确性、灵敏度和通量。我们正在使用这种新整合的FDD技术对p53肿瘤抑制基因靶点进行系统全面的筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验