Suppr超能文献

WNK3调节氯离子进出细胞的转运:对细胞体积控制和神经元兴奋性的影响。

WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability.

作者信息

Kahle Kristopher T, Rinehart Jesse, de Los Heros Paola, Louvi Angeliki, Meade Patricia, Vazquez Norma, Hebert Steven C, Gamba Gerardo, Gimenez Ignacio, Lifton Richard P

机构信息

Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16783-8. doi: 10.1073/pnas.0508307102. Epub 2005 Nov 7.

Abstract

The regulation of Cl(-) transport into and out of cells plays a critical role in the maintenance of intracellular volume and the excitability of GABA responsive neurons. The molecular determinants of these seemingly diverse processes are related ion cotransporters: Cl(-) influx is mediated by the Na-K-2Cl cotransporter NKCC1 and Cl(-) efflux via K-Cl cotransporters, KCC1 or KCC2. A Cl(-)/volume-sensitive kinase has been proposed to coordinately regulate these activities via altered phosphorylation of the transporters; phosphorylation activates NKCC1 while inhibiting KCCs, and dephosphorylation has the opposite effects. We show that WNK3, a member of the WNK family of serine-threonine kinases, colocalizes with NKCC1 and KCC1/2 in diverse Cl(-)-transporting epithelia and in neurons expressing ionotropic GABA(A) receptors in the hippocampus, cerebellum, cerebral cortex, and reticular activating system. By expression studies in Xenopus oocytes, we show that kinase-active WNK3 increases Cl(-) influx via NKCC1, and that it inhibits Cl(-) exit through KCC1 and KCC2; kinase-inactive WNK3 has the opposite effects. WNK3's effects are imparted via altered phosphorylation and surface expression of its downstream targets and bypass the normal requirement of altered tonicity for activation of these transporters. Together, these data indicate that WNK3 can modulate the level of intracellular Cl(-) via opposing actions on entry and exit pathways. They suggest that WNK3 is part of the Cl(-)/volume-sensing mechanism necessary for the maintenance of cell volume during osmotic stress and the dynamic modulation of GABA neurotransmission.

摘要

氯离子进出细胞的调节在维持细胞内体积以及GABA反应性神经元的兴奋性方面起着关键作用。这些看似不同过程的分子决定因素是相关的离子共转运体:氯离子内流由钠-钾-2氯共转运体NKCC1介导,而氯离子外流则通过钾-氯共转运体KCC1或KCC2。有人提出一种氯离子/体积敏感激酶通过改变转运体的磷酸化来协调调节这些活动;磷酸化激活NKCC1同时抑制KCCs,而去磷酸化则产生相反的作用。我们发现,丝氨酸-苏氨酸激酶WNK家族的成员WNK3,在多种氯离子转运上皮细胞以及海马体、小脑、大脑皮层和网状激活系统中表达离子型GABA(A)受体的神经元中,与NKCC1和KCC1/2共定位。通过在非洲爪蟾卵母细胞中的表达研究,我们发现具有激酶活性的WNK3通过NKCC1增加氯离子内流,并且它抑制氯离子通过KCC1和KCC2外流;无激酶活性的WNK3则产生相反的作用。WNK3的作用是通过改变其下游靶点的磷酸化和表面表达来实现的,并且绕过了这些转运体激活时对渗透压改变的正常需求。总之,这些数据表明WNK3可以通过对氯离子进出途径的相反作用来调节细胞内氯离子水平。它们提示WNK3是渗透压应激期间维持细胞体积以及动态调节GABA神经传递所需的氯离子/体积传感机制的一部分。

相似文献

1
WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16783-8. doi: 10.1073/pnas.0508307102. Epub 2005 Nov 7.
2
WNK3 is a putative chloride-sensing kinase.
Cell Physiol Biochem. 2011;28(6):1123-34. doi: 10.1159/000335848. Epub 2011 Dec 16.
3
WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1976-81. doi: 10.1073/pnas.0510947103. Epub 2006 Jan 30.
4
WNK3 and WNK4 exhibit opposite sensitivity with respect to cell volume and intracellular chloride concentration.
Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C371-C380. doi: 10.1152/ajpcell.00488.2019. Epub 2020 Jun 24.
5
WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
J Physiol. 2006 Mar 1;571(Pt 2):275-86. doi: 10.1113/jphysiol.2005.102202. Epub 2005 Dec 15.
6
Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases.
Biochim Biophys Acta. 2010 Dec;1802(12):1150-8. doi: 10.1016/j.bbadis.2010.07.009. Epub 2010 Jul 15.
8
Role of WNK Kinases in the Modulation of Cell Volume.
Curr Top Membr. 2018;81:207-235. doi: 10.1016/bs.ctm.2018.08.002. Epub 2018 Aug 29.
10
Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8458-63. doi: 10.1073/pnas.0802966105. Epub 2008 Jun 11.

引用本文的文献

1
The biogenesis of potassium transporters: implications of disease-associated mutations.
Crit Rev Biochem Mol Biol. 2024 Jun-Aug;59(3-4):154-198. doi: 10.1080/10409238.2024.2369986. Epub 2024 Jul 1.
2
Efficacy of bumetanide in animal models of ischemic stroke: a systematic review and meta-analysis.
Aging (Albany NY). 2024 Jun 7;16(11):9959-9971. doi: 10.18632/aging.205910.
3
The genetic landscape of autism spectrum disorder in the Middle Eastern population.
Front Genet. 2024 Mar 20;15:1363849. doi: 10.3389/fgene.2024.1363849. eCollection 2024.
4
The role of family of cation-chloride cotransporters and drug discovery methodologies.
J Pharm Anal. 2023 Dec;13(12):1471-1495. doi: 10.1016/j.jpha.2023.09.002. Epub 2023 Sep 9.
5
Neuronal K-Cl cotransporter KCC2 as a promising drug target for epilepsy treatment.
Acta Pharmacol Sin. 2024 Jan;45(1):1-22. doi: 10.1038/s41401-023-01149-9. Epub 2023 Sep 13.
9
How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders.
Front Mol Neurosci. 2022 Jul 8;15:893111. doi: 10.3389/fnmol.2022.893111. eCollection 2022.
10
WNK1 in Malignant Behaviors: A Potential Target for Cancer?
Front Cell Dev Biol. 2022 Jun 22;10:935318. doi: 10.3389/fcell.2022.935318. eCollection 2022.

本文引用的文献

1
WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16777-82. doi: 10.1073/pnas.0508303102. Epub 2005 Nov 7.
2
Properties of WNK1 and implications for other family members.
J Biol Chem. 2005 Jul 22;280(29):26653-8. doi: 10.1074/jbc.M502598200. Epub 2005 May 9.
3
Behavioural phenotypes of hypomorphic KCC2-deficient mice.
Eur J Neurosci. 2005 Mar;21(5):1327-37. doi: 10.1111/j.1460-9568.2005.03959.x.
4
Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
Physiol Rev. 2005 Apr;85(2):423-93. doi: 10.1152/physrev.00011.2004.
5
Regulation of K-Cl cotransport: from function to genes.
J Membr Biol. 2004 Oct 1;201(3):109-37. doi: 10.1007/s00232-004-0695-6.
6
Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII.
J Physiol. 2005 Jan 1;562(Pt 1):27-36. doi: 10.1113/jphysiol.2004.077495. Epub 2004 Nov 4.
7
Ion channels: function unravelled by dysfunction.
Nat Cell Biol. 2004 Nov;6(11):1039-47. doi: 10.1038/ncb1104-1039.
8
Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride.
J Neurophysiol. 2005 Mar;93(3):1557-68. doi: 10.1152/jn.00616.2004. Epub 2004 Oct 6.
10
Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1.
J Physiol. 2004 Jun 15;557(Pt 3):829-41. doi: 10.1113/jphysiol.2004.062471. Epub 2004 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验