Helms My N, Chen Xi-Juan, Ramosevac Semra, Eaton Douglas C, Jain Lucky
Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
Am J Physiol Lung Cell Mol Physiol. 2006 Apr;290(4):L710-L722. doi: 10.1152/ajplung.00486.2004. Epub 2005 Nov 11.
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cell line (L2). Dopamine increased channel open probability (P(o)) without changing the unitary current. The D(1) receptor blocker SCH-23390 blocked the dopamine effect, but the D(2) receptor blocker sulpiride did not. The dopamine-mediated increase in ENaC activity was not a secondary effect of dopamine stimulation of Na-K-ATPase, since ouabain applied to the basolateral surface to block the activity of Na-K-ATPase did not alter dopamine-mediated ENaC activity. Protein kinase A (PKA) was not responsible for dopamine's effect since a PKA inhibitor, H89, did not reduce dopamine's effect. However, cpt-2-O-Me-cAMP, which selectively binds and activates EPAC (exchange protein activated by cAMP) but not PKA, increased ENaC P(o). An Src inhibitor, PP2, and the phosphatidylinositol-3-kinase inhibitor, LY-294002, blocked dopamine's effect on ENaC. In addition, an MEK blocker, U0126, an inhibitor of phospholipase A(2), and a protein phosphatase inhibitor also blocked the effect of dopamine on ENaC P(o). Finally, since the cAMP-EPAC-Rap1 pathway also activates DARPP32 (32-kDa dopamine response protein phosphatase), we confirmed that dopamine phosphorylates DARPP32, and okadaic acid, which blocks phosphatases (DARPP32), also blocks dopamine's effect. In summary, dopamine increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC and Rap1, signaling molecules usually associated with growth-factor-activated receptors.
多巴胺可增加肺液清除率。这部分归因于基底外侧钠钾ATP酶的激活。然而,钠钾ATP酶自身的激活不太可能在跨上皮转运中产生巨大变化。因此,我们研究了顶端和基底外侧多巴胺对肺泡Ⅱ型细胞系(L2)单层中顶端高选择性钠通道[上皮钠通道(ENaC)]的影响。多巴胺增加了通道开放概率(P(o)),而未改变单通道电流。D(1)受体阻滞剂SCH-23390可阻断多巴胺的作用,但D(2)受体阻滞剂舒必利则不能。多巴胺介导的ENaC活性增加并非多巴胺刺激钠钾ATP酶的继发效应,因为应用于基底外侧表面以阻断钠钾ATP酶活性的哇巴因并未改变多巴胺介导的ENaC活性。蛋白激酶A(PKA)并非多巴胺作用的原因,因为PKA抑制剂H89并未降低多巴胺的作用。然而,选择性结合并激活EPAC(由cAMP激活的交换蛋白)而非PKA的cpt-2-O-Me-cAMP增加了ENaC的P(o)。Src抑制剂PP2和磷脂酰肌醇-3-激酶抑制剂LY-294002可阻断多巴胺对ENaC的作用。此外,MEK阻滞剂U0126、磷脂酶A(2)抑制剂以及蛋白磷酸酶抑制剂也可阻断多巴胺对ENaC P(o)的作用。最后,由于cAMP-EPAC-Rap1通路也可激活DARPP32(32 kDa多巴胺反应蛋白磷酸酶),我们证实多巴胺可使DARPP32磷酸化,而阻断磷酸酶(DARPP32)的冈田酸也可阻断多巴胺的作用。总之,多巴胺通过涉及EPAC和Rap1的cAMP介导的替代信号通路增加ENaC活性,这些信号分子通常与生长因子激活的受体相关。