Suppr超能文献

非单调临床评估量表数据的纵向模型。

A longitudinal model for non-monotonic clinical assessment scale data.

作者信息

Jonsson Fredrik, Marshall Scott, Krams Michael, Jonsson E Niclas

机构信息

Department of Pharmaceutical Biosciences--Division of Pharmacokinetics and Drug Therapy, Uppsala University, Sweden.

出版信息

J Pharmacokinet Pharmacodyn. 2005 Dec;32(5-6):795-815. doi: 10.1007/s10928-005-0098-z.

Abstract

Clinical assessment scales, where subitem ratings are added and summarized as a total score, are convenient tools for monitoring disease progression and often used to measure the effect of drug treatment in clinical trials. Statistical evaluation of any beneficial treatment effects tends to focus on single-valued summary measures, for example, the difference between the score at the end of treatment and the score at baseline. Such analyses ignore potentially important features of the data, e.g. early vs. late recoveries. It is therefore of interest to develop longitudinal models that make more efficient use of the information present in non-monotonic clinical assessment scale data. We propose a two-part modeling approach for the modeling of this type of data. Non-monotonicity is managed by regarding score changes as Markovian transition events. A set of probabilistic models are used to describe the occurrences of the transitions. Continuous models are used to describe the magnitude of the scale score change, given the observed transition. In this manner, a non-monotonic disease progression is handled more efficiently than if other available methods are used. We illustrate this approach using data from a recent phase II study of a drug used in the treatment of stroke, where stroke severity was measured on the Scandinavian Stroke Scale (SSS). This scale consists of nine subitems: consciousness, eye movements, hand/arm/leg motor performance, orientation, speech, facial palsy, and gait. The data were non-monotonic, since there was at any time a risk of a score decline, despite a general tendency towards healing. The two-part probabilistic/continuous model fit the data well and proved to be robust in model-checking procedures such as posterior predictive checks and bootstrapping. The models derived using this approach could potentially accommodate drug effects, not only in terms of score improvement at end of study, but also on the onset of recovery, on dropout and on the probability of unfavorable progression patterns. In addition, it is possible to use the resulting for simulation of the prospective outcome of future studies. We conclude that this approach has considerable potential for more efficient use of information in longitudinal modeling of non-monotonic clinical assessment scale data.

摘要

临床评估量表通过对各子项评分进行相加并汇总为总分,是监测疾病进展的便捷工具,常用于衡量临床试验中药物治疗的效果。对任何有益治疗效果的统计评估往往侧重于单值汇总指标,例如治疗结束时的评分与基线评分之间的差异。此类分析忽略了数据中潜在的重要特征,例如早期恢复与晚期恢复情况。因此,开发能够更有效利用非单调临床评估量表数据中所包含信息的纵向模型具有重要意义。我们提出了一种两部分建模方法来对这类数据进行建模。通过将评分变化视为马尔可夫转移事件来处理非单调性。使用一组概率模型来描述转移的发生情况。在观察到转移的情况下,使用连续模型来描述量表评分变化的幅度。通过这种方式,相较于使用其他现有方法,非单调疾病进展能够得到更有效的处理。我们使用近期一项治疗中风药物的II期研究数据对该方法进行说明,其中中风严重程度采用斯堪的纳维亚中风量表(SSS)进行测量。该量表由九个子项组成:意识、眼球运动、手/臂/腿运动表现、定向力、言语、面瘫和步态。这些数据是非单调的,因为尽管总体上有康复趋势,但在任何时候都存在评分下降的风险。两部分概率/连续模型对数据拟合良好,并且在诸如后验预测检验和自助法等模型检验过程中被证明是稳健的。使用这种方法得出的模型不仅能够潜在地体现药物在研究结束时的评分改善效果,还能体现其对恢复起始、脱落以及不良进展模式概率的影响。此外,还可以利用结果对未来研究的预期结果进行模拟。我们得出结论,这种方法在更有效地利用非单调临床评估量表数据的纵向建模中的信息方面具有相当大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验