Banerjee Ipsita A, Yu Lingtao, Matsui Hiroshi
Department of Chemistry and Biochemistry at Hunter College and Graduate Center, The City University of New York, New York, New York 10021, USA.
J Am Chem Soc. 2005 Nov 23;127(46):16002-3. doi: 10.1021/ja054907e.
ZnS nanocrystal, a class of wide-gap semiconductors, has shown interesting optical, electrical, and optoelectric properties via quantum confinement. For those applications, phase controls of ZnS nanocrystals and nanowires were critical to tune their physical properties to the appropriate ones. The wurtzite ZnS nanocrystal growth at room temperature is the useful fabrication; however, the most stable ZnS structure in nanoscale is the zinc blende (cubic) structure, and scientists have just begun exploring the room-temperature synthesis of the wurtzite (hexagonal) structure of ZnS nanocrystals. In this report, we applied the Zn finger-like peptides as templates to control the phase of ZnS nanocrystals to the wurtzite structure at room temperature. The peptide nanotubes, consisting of a 20 amino acids (VAL-CYS-ALA-THR-CYS-GLU-GLN-ILE-ALA-ASP-SER-GLN-HIS-ARG-SER-HIS-ARG-GLN-MET-VAL, M1 peptide) synthesized based on the peptide motif of the Influenza Virus Matrix Protein M1, could grow the wurtzite ZnS nanocrystals on the nanotube templates in solution. In the M1 protein, the unfolding process of the helical peptide motif via pH change creates a linker region between N- and C-terminated helical domains that contains a Zn finger-like Cys2His2 motif. Because the higher pH increases the uptake of Zn ions in the Cys2His2 motif of the M1 peptide by unfolding more helical domains, the pH change can essentially control the size and the number of the nucleation sites in the M1 peptides to grow ZnS nanocrystals with desired phases. Here we optimized the nucleation sites in the M1 peptides by unfolding them via pH change to obtain highly monodisperse and crystalline wurtzite ZnS nanocrystals on the template nanotubes at room temperature. This type of peptide-induced biomineralization technique will provide a clean and reproducible method to produce semiconductor nanotubes due to its efficient nanocrystal formation, and the band gaps of resulting nanotubes can also be tuned simply by phase control of ZnS nanocrystal coatings via the optimization of the unfolding peptide structures.
硫化锌纳米晶体是一类宽禁带半导体,通过量子限域展现出了有趣的光学、电学和光电特性。对于这些应用而言,硫化锌纳米晶体和纳米线的相控对于将其物理性质调节至合适状态至关重要。室温下纤锌矿型硫化锌纳米晶体的生长是一种有用的制备方法;然而,纳米尺度下最稳定的硫化锌结构是闪锌矿(立方)结构,并且科学家们才刚刚开始探索室温合成纤锌矿(六方)结构的硫化锌纳米晶体。在本报告中,我们应用锌指样肽作为模板,在室温下将硫化锌纳米晶体的相控为纤锌矿结构。基于流感病毒基质蛋白M1的肽基序合成的由20个氨基酸(VAL-CYS-ALA-THR-CYS-GLU-GLN-ILE-ALA-ASP-SER-GLN-HIS-ARG-SER-HIS-ARG-GLN-MET-VAL,M1肽)组成的肽纳米管,能够在溶液中的纳米管模板上生长出纤锌矿型硫化锌纳米晶体。在M1蛋白中,螺旋肽基序通过pH变化的展开过程在N端和C端螺旋结构域之间形成了一个连接区域,该区域包含一个锌指样Cys2His2基序。由于较高的pH通过展开更多螺旋结构域增加了M1肽的Cys2His2基序中锌离子的摄取,pH变化本质上可以控制M1肽中成核位点的大小和数量,从而生长出具有所需相的硫化锌纳米晶体。在此,我们通过pH变化展开M1肽来优化其中的成核位点,以在室温下在模板纳米管上获得高度单分散且结晶的纤锌矿型硫化锌纳米晶体。这种肽诱导生物矿化技术由于其高效的纳米晶体形成,将提供一种清洁且可重复的方法来制备半导体纳米管,并且通过优化展开肽结构对硫化锌纳米晶体涂层进行相控,还可以简单地调节所得纳米管的带隙。