Suppr超能文献

利用固态核磁共振实现热浴算法冷却的实验研究

Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.

作者信息

Baugh J, Moussa O, Ryan C A, Nayak A, Laflamme R

机构信息

Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

出版信息

Nature. 2005 Nov 24;438(7067):470-3. doi: 10.1038/nature04272.

Abstract

The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.

摘要

量子力学那些有违直觉的特性,有可能通过开发出高效算法(且不存在已知的经典对应算法)来彻底变革信息处理。要利用这一力量,需要开发出一套构建模块,其中之一就是将一组量子比特(qubit)初始化为已知状态的方法。此外,在计算过程中必须有新的辅助量子比特可用,以实现容错。因此,在用于实现量子计算的任何物理系统中,必须能够有选择地、动态地从要映射到量子比特的那部分系统中去除熵。一种这样的方法是“开放系统”冷却协议,其中一部分量子比特可以与具有大热容量的外部系统接触。理论研究成果催生了一种与实现方式无关的冷却程序,即热库算法冷却。这些研究最终提出了一种最优算法——配对算法,该算法用于计算热库算法冷却的物理极限。在此,我们报告通过热库算法冷却实现量子系统多步冷却的实验成果。该实验是利用固态系综三量子比特系统的核磁共振进行的。我们展示了将一个特定量子比特反复重新极化到有效自旋库温度,并在三量子比特子空间内交替进行逻辑操作,最终将第二个量子比特冷却到该温度以下。展示这些操作所需的控制能力,代表了固态核磁共振量子比特操控方面向前迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验