Melis Anastasios, Chen Hsu-Ching
Department of Plant & Microbial Biology, University of California , Berkeley, CA 94720-3102, USA.
Photosynth Res. 2005 Dec;86(3):299-307. doi: 10.1007/s11120-005-7382-z. Epub 2005 Nov 12.
This review summarizes evidence at the molecular genetic, protein and regulatory levels concerning the existence and function of a putative ABC-type chloroplast envelope-localized sulfate transporter in the model unicellular green alga Chlamydomonas reinhardtii. From the four nuclear genes encoding this sulfate permease holocomplex, two are coding for chloroplast envelope-targeted transmembrane proteins (SulP and SulP2), a chloroplast stroma-targeted ATP-binding protein (Sabc) and a substrate (sulfate)-binding protein (Sbp) that is localized on the cytosolic side of the chloroplast envelope. The sulfate permease holocomplex is postulated to consist of a SulP-SulP2 chloroplast envelope transmembrane heterodimer, flanked by the Sabc and the Sbp proteins on the stroma side and the cytosolic side of the inner envelope, respectively. The mature SulP and SulP2 proteins contain seven transmembrane domains and one or two large hydrophilic loops, which are oriented toward the cytosol. The corresponding prokaryotic-origin genes (SulP and SulP2) probably migrated from the chloroplast to the nuclear genome during the evolution of Chlamydomonas reinhardtii. These genes, or any of its homologues, have not been retained in vascular plants, e.g. Arabidopsis thaliana, although they are encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the Photosystem II D1 reaction center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in Chlamydomonas reinhardtii is discussed along with its impact on the repair of Photosystem II from a frequently occurring photo-oxidative damage and H2-evolution related metabolism in this green alga.
本综述总结了关于模式单细胞绿藻莱茵衣藻中一种假定的ABC型叶绿体包膜定位硫酸盐转运体的存在和功能在分子遗传、蛋白质和调控水平上的证据。在编码这种硫酸盐通透酶全复合物的四个核基因中,两个编码靶向叶绿体包膜的跨膜蛋白(SulP和SulP2)、一个靶向叶绿体基质的ATP结合蛋白(Sabc)和一个位于叶绿体包膜胞质侧的底物(硫酸盐)结合蛋白(Sbp)。推测硫酸盐通透酶全复合物由一个SulP-SulP2叶绿体包膜跨膜异源二聚体组成,分别在内包膜的基质侧和胞质侧由Sabc和Sbp蛋白侧翼。成熟的SulP和SulP2蛋白含有七个跨膜结构域和一个或两个大的亲水环,这些环朝向胞质。相应的原核起源基因(SulP和SulP2)可能在莱茵衣藻的进化过程中从叶绿体迁移到核基因组。这些基因或其任何同源物在维管植物如拟南芥中未被保留,尽管它们在一种地钱(多歧藓)的叶绿体基因组中出现。在SulP基因表达水平较低的莱茵衣藻反义转化体中探究了SulP蛋白的功能。结果表明,由于细胞中SulP基因表达减弱,细胞对硫酸盐的摄取能力降低,直接影响叶绿体中从头蛋白质生物合成的速率。反义转化体表现出硫酸盐缺乏细胞的表型,显示出光饱和氧释放速率缓慢、叶绿体中Rubisco水平低以及光系统II D1反应中心蛋白的稳态水平低。本文讨论了叶绿体硫酸盐转运在莱茵衣藻中硫酸盐摄取和同化中的作用,以及其对光系统II从频繁发生的光氧化损伤中修复和该绿藻中与H2释放相关代谢的影响。