den Dekker Arnold J, Sijbers Jan
Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands.
Magn Reson Imaging. 2005 Nov;23(9):953-9. doi: 10.1016/j.mri.2005.07.008. Epub 2005 Oct 19.
In functional magnetic resonance imaging (fMRI), the general linear model test (GLMT) is widely used for brain activation detection. However, the GLMT relies on the assumption that the noise corrupting the data is Gaussian distributed. Because the majority of fMRI studies employ magnitude image reconstructions, which are Rician distributed, this assumption is invalid and has significant consequences in case the signal-to-noise ratio (SNR) is low. In this study, we show that the GLMT should not be used at low SNR. Furthermore, we propose a generalized likelihood ratio test for magnitude MR data that has the same performance compared to the GLMT for high SNR, but performs significantly better than the GLMT for low SNR.
在功能磁共振成像(fMRI)中,一般线性模型检验(GLMT)被广泛用于脑激活检测。然而,GLMT依赖于这样一个假设,即破坏数据的噪声呈高斯分布。由于大多数fMRI研究采用的是莱斯分布的幅度图像重建,所以这个假设是无效的,并且在信噪比(SNR)较低的情况下会产生重大影响。在本研究中,我们表明在低信噪比情况下不应使用GLMT。此外,我们提出了一种针对幅度磁共振数据的广义似然比检验,该检验在高信噪比时与GLMT具有相同的性能,但在低信噪比时的表现明显优于GLMT。