Huang You C, Keh Huan J
Department of Chemical Engineering, National Taiwan University, Taipei, Republic of China.
Langmuir. 2005 Dec 6;21(25):11659-65. doi: 10.1021/la051171q.
A theoretical study is presented for the dynamic electrophoretic response of a charged spherical particle in an unbounded electrolyte solution to a step change in the applied electric field. The electric double layer surrounding the particle may have an arbitrary thickness relative to the particle radius. The transient Stokes equations modified with the electrostatic effect which govern the fluid velocity field are linearized by assuming that the system is only slightly distorted from equilibrium. Semianalytical results for the transient electrophoretic mobility of the particle are obtained as a function of relevant parameters by using the Debye-Huckel approximation. The results demonstrate that the electrophoretic mobility of a particle with a constant relative mass density at a specified dimensionless time normalized by its steady-state quantity decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. For a given value of kappaa, a heavier particle lags behind a lighter one in the development of the electrophoretic mobility. In the limits of kappaa --> infinity and kappaa = 0, our results reduce to the corresponding analytical solutions available in the literature. The electrophoretic acceleration of the particle is a monotonic decreasing function of the time for any fixed value of kappaa. In practical applications, the effect of the relaxation time for the transient electrophoresis is negligible, regardless of the value of kappaa or the relative mass density of the particle.
本文针对无界电解质溶液中带电球形颗粒在施加电场阶跃变化时的动态电泳响应进行了理论研究。颗粒周围的电双层相对于颗粒半径可能具有任意厚度。通过假设系统仅略微偏离平衡态,对受静电效应修正的控制流体速度场的瞬态斯托克斯方程进行线性化。利用德拜 - 休克尔近似,得到了颗粒瞬态电泳迁移率作为相关参数函数的半解析结果。结果表明,在特定的无量纲时间下,以其稳态值归一化的具有恒定相对质量密度的颗粒的电泳迁移率随参数κa的减小而单调下降,其中κ⁻¹是德拜屏蔽长度,a是颗粒半径。对于给定的κa值,较重的颗粒在电泳迁移率发展过程中落后于较轻的颗粒。在κa→∞和κa = 0的极限情况下,我们的结果简化为文献中可用的相应解析解。对于任何固定的κa值,颗粒的电泳加速度是时间的单调递减函数。在实际应用中,无论κa的值或颗粒的相对质量密度如何,瞬态电泳弛豫时间的影响都可以忽略不计。