Suppr超能文献

相似文献

2
Analysis of carboxyl tail function in the skeletal muscle Cl- channel hClC-1.
Biochem J. 2008 Jul 1;413(1):61-9. doi: 10.1042/BJ20071489.
3
Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
Biophys J. 2016 Nov 1;111(9):1876-1886. doi: 10.1016/j.bpj.2016.09.036.
4
Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains.
Biochemistry. 1998 Feb 3;37(5):1315-21. doi: 10.1021/bi972418o.
6
The role of the carboxyl terminus in ClC chloride channel function.
J Biol Chem. 2004 Mar 26;279(13):13140-7. doi: 10.1074/jbc.M312649200. Epub 2004 Jan 12.
7
Functional and structural conservation of CBS domains from CLC chloride channels.
J Physiol. 2004 Jun 1;557(Pt 2):363-78. doi: 10.1113/jphysiol.2003.058453. Epub 2004 Jan 14.
8
Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1.
J Biol Chem. 1997 Aug 15;272(33):20515-21. doi: 10.1074/jbc.272.33.20515.
9
Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
J Physiol. 2008 Nov 15;586(22):5325-36. doi: 10.1113/jphysiol.2008.158097. Epub 2008 Sep 18.
10
Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
J Biol Chem. 2013 Oct 4;288(40):28611-9. doi: 10.1074/jbc.M113.509364. Epub 2013 Aug 27.

引用本文的文献

1
Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating.
J Physiol. 2016 Jun 15;594(12):3391-406. doi: 10.1113/JP271556. Epub 2016 Mar 20.
2
Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
J Biol Chem. 2013 Oct 4;288(40):28611-9. doi: 10.1074/jbc.M113.509364. Epub 2013 Aug 27.
3
The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters.
Physiol Rev. 2013 Apr;93(2):803-959. doi: 10.1152/physrev.00023.2012.
4
CLC anion channel regulatory phosphorylation and conserved signal transduction domains.
Biophys J. 2012 Oct 17;103(8):1706-18. doi: 10.1016/j.bpj.2012.09.001. Epub 2012 Oct 16.
6
Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
J Physiol. 2008 Nov 15;586(22):5325-36. doi: 10.1113/jphysiol.2008.158097. Epub 2008 Sep 18.

本文引用的文献

1
Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
J Biol Chem. 2005 Sep 16;280(37):32452-8. doi: 10.1074/jbc.M502890200. Epub 2005 Jul 18.
2
Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride channels.
Biophys J. 2005 Sep;89(3):1710-20. doi: 10.1529/biophysj.104.056093. Epub 2005 Jun 24.
3
Phenotypic variability in myotonia congenita.
Muscle Nerve. 2005 Jul;32(1):19-34. doi: 10.1002/mus.20295.
4
Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies.
Physiol Genomics. 2004 Sep 16;19(1):74-83. doi: 10.1152/physiolgenomics.00070.2004. Epub 2004 Jul 13.
5
Exon 17 skipping in CLCN1 leads to recessive myotonia congenita.
Muscle Nerve. 2004 May;29(5):670-6. doi: 10.1002/mus.20005.
6
Structural insights into chloride and proton-mediated gating of CLC chloride channels.
Biochemistry. 2004 Feb 10;43(5):1135-44. doi: 10.1021/bi0359776.
7
Functional and structural conservation of CBS domains from CLC chloride channels.
J Physiol. 2004 Jun 1;557(Pt 2):363-78. doi: 10.1113/jphysiol.2003.058453. Epub 2004 Jan 14.
9
Bateman domains and adenosine derivatives form a binding contract.
J Clin Invest. 2004 Jan;113(2):182-4. doi: 10.1172/JCI20846.
10
The role of the carboxyl terminus in ClC chloride channel function.
J Biol Chem. 2004 Mar 26;279(13):13140-7. doi: 10.1074/jbc.M312649200. Epub 2004 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验