Lazebnik Roee S, Weinberg Brent D, Breen Michael S, Lewin Jonathan S, Wilson David L
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Acad Radiol. 2005 Dec;12(12):1491-501. doi: 10.1016/j.acra.2005.07.011.
Interventional magnetic resonance imaging (iMRI) allows real-time guidance and optimization of radiofrequency ablation of pathologic tissue. For many tissues, resulting lesions have a characteristic two-boundary appearance featuring an inner region and an outer hyper-intense margin in both T2 and contrast-enhanced (CE) T1-weighted MR images. We created a geometric model-based semiautomatic method to aid in real-time lesion segmentation, cross-sectional/three-dimensional visualization, and intra/posttreatment evaluation.
Our method relies on a 12-parameter, 3-dimensional, globally deformable model with quadric surfaces that describe both lesion boundaries. We present an energy minimization approach to quickly and semiautomatically fit the model to a gray-scale MR image volume. We applied the method to in vivo lesions (n = 10) in a rabbit thigh model, using T2 and CE T1-weighted MR images, and compared the results with manually segmented boundaries.
For all lesions, the median error was < or =1.21 mm for the inner region and < or =1.00 mm for the outer hyper-intense region, values that favorably compare to a voxel width of 0.7 mm and distances between the borders manually segmented by the two operators.
Our method provides a precise, semiautomatic approximation of lesion shape for ellipsoidal lesions. Further, the method has clinical applications in lesion visualization, volume estimation, and treatment evaluation.
介入式磁共振成像(iMRI)可实现对病理性组织射频消融的实时引导与优化。对于许多组织而言,在T2加权和对比增强(CE)T1加权磁共振图像中,所形成的病灶具有特征性的双边界外观,包括一个内部区域和一个外部高强度边缘。我们创建了一种基于几何模型的半自动方法,以辅助进行实时病灶分割、横断面/三维可视化以及治疗前/后的评估。
我们的方法依赖于一个具有二次曲面的12参数三维全局可变形模型,该模型描述了病灶的两个边界。我们提出了一种能量最小化方法,以便将模型快速半自动地拟合到灰度磁共振图像体中。我们使用T2加权和CE T1加权磁共振图像,将该方法应用于兔大腿模型中的体内病灶(n = 10),并将结果与手动分割的边界进行比较。
对于所有病灶,内部区域的中位误差≤1.21毫米,外部高强度区域的中位误差≤1.00毫米,这些值与0.7毫米的体素宽度以及两位操作员手动分割的边界之间的距离相比具有优势。
我们的方法为椭圆形病灶提供了精确的病灶形状半自动近似值。此外,该方法在病灶可视化、体积估计和治疗评估方面具有临床应用价值。