Suppr超能文献

大型小鼠小脑的神经元迁移缺陷与伯格曼胶质细胞组织紊乱及颗粒神经元迁移延迟有关。

Neuronal migration defects in cerebellum of the Largemyd mouse are associated with disruptions in Bergmann glia organization and delayed migration of granule neurons.

作者信息

Qu Qiang, Smith Frances I

机构信息

University of Massachusetts Medical School, Shriver Center, Waltham, MA, USA.

出版信息

Cerebellum. 2005;4(4):261-70. doi: 10.1080/14734220500358351.

Abstract

The Large gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in either Large or dystroglycan cause abnormal neuronal migration. The mechanism for this effect is not fully understood. This study analyzes the Largemyd mouse cerebellum during postnatal cerebellar development. Large is shown to be expressed most strongly in the Bergmann glial cells and Purkinje cells throughout cerebellar development, which is similar to what is known for dystroglycan expression. Discontinuities of the pial surface of the developing Largemyd mouse cerebellum correlate with disruption of the normal organization of the external granule cell layer and Bergmann glial fibers. At early time points, granule neurons express differentiation markers normally, both temporally and spatially, and show no defects in neurite outgrowth in in vitro assays. However, granule neuron migration is delayed within the external granule and molecular layers, resulting in granule neurons undergoing their intrinsically programmed differentiation in inappropriate locations. Consequently, cells expressing mature granule neuron markers become stranded within these layers. The cause of the less efficient migration is likely due to both physical disruption of the glial-guide scaffolding, as well as to suboptimal neuronal-glial guide interactions during migration.

摘要

Large基因编码一种假定的糖基转移酶,该酶是dystroglycan正常糖基化所必需的,Large或dystroglycan的缺陷都会导致神经元迁移异常。这种效应的机制尚未完全了解。本研究分析了出生后小脑发育过程中的Largemyd小鼠小脑。结果显示,在整个小脑发育过程中,Large在伯格曼胶质细胞和浦肯野细胞中表达最强,这与dystroglycan的表达情况相似。发育中的Largemyd小鼠小脑软膜表面的连续性中断与外颗粒细胞层和伯格曼胶质纤维正常组织结构的破坏相关。在早期时间点,颗粒神经元在时间和空间上正常表达分化标志物,并且在体外实验中神经突生长没有缺陷。然而,颗粒神经元在外颗粒层和分子层内的迁移延迟,导致颗粒神经元在不适当的位置进行其内在编程的分化。因此,表达成熟颗粒神经元标志物的细胞被困在这些层内。迁移效率较低的原因可能是由于胶质引导支架的物理破坏,以及迁移过程中神经元与胶质引导之间的相互作用不理想。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验