Parker William A, Freeman Carolyn R
Department of Medical Physics, McGill University Health Centre, Montreal, Canada.
Radiother Oncol. 2006 Feb;78(2):217-22. doi: 10.1016/j.radonc.2005.11.009. Epub 2005 Dec 5.
Craniospinal irradiation poses technical difficulties that may be addressed with the use of the newer technologies that have become available over the past decade. The use of CT simulation allows improved target localisation and beam geometry definition while significantly reducing the treatment simulation time. We have developed a CT-based technique for whole CNS irradiation in the supine position that uses fixed field parameters, asymmetric jaws for field matching and drastically reduces simulation and treatment times.
The patient is CT scanned and treated in the supine position. The clinical target volume and relevant critical structures are outlined on a planning CT scan. Half beam blocked lateral fields with a collimator rotation are used to match the beam divergence from the superior border of the spinal field at the C2 vertebral body. The shielding for the cranial fields is generated automatically, and the dose distribution is calculated using a 3D treatment planning system. Fixed field parameters are used for the planning and treatment. The position of the isocenter of the spine field is always a fixed longitudinal distance from the isocenter of the brain fields. If multiple posterior fields are required, the isocenter of the second spine field is always a fixed longitudinal distance from that of the first and the gap between the fields is determined using virtual simulation and feathered during treatment using the asymmetric jaws of the linear accelerator. All treatment portals are filmed daily during the first week of treatment, and after each junction change thereafter.
The supine position provides numerous advantages. Patients are more comfortable, the treatment position is more reproducible, and access to the airway is possible, if necessary, for patient sedation. The use of CT simulation decreases the simulation time, allows for increased planning accuracy, and enables the use of multimodality image registration, and 3D treatment planning. The use of asymmetric jaws allows for junction feathering without changing the patient setup or using a couch angle.
全脑全脊髓照射存在技术难题,而过去十年出现的新技术或许可以解决这些问题。使用CT模拟可改善靶区定位和射野几何形状的定义,同时显著缩短治疗模拟时间。我们已经开发出一种基于CT的仰卧位全中枢神经系统照射技术,该技术采用固定野参数、不对称准直器叶片进行射野匹配,大幅缩短了模拟和治疗时间。
患者在仰卧位进行CT扫描和治疗。在计划CT扫描上勾勒出临床靶区体积和相关关键结构。使用带有准直器旋转的半束遮挡侧野来匹配从C2椎体水平脊髓野上缘发散的射野。自动生成颅脑野的屏蔽,使用三维治疗计划系统计算剂量分布。计划和治疗均采用固定野参数。脊髓野等中心的位置始终与颅脑野等中心保持固定的纵向距离。如果需要多个后野,第二个脊髓野的等中心始终与第一个脊髓野的等中心保持固定的纵向距离,野间间距通过虚拟模拟确定,并在治疗期间使用直线加速器的不对称准直器叶片进行羽化处理。在治疗的第一周,每天对所有治疗射野进行拍摄,此后每次射野衔接改变后也进行拍摄。
仰卧位具有诸多优势。患者更舒适,治疗体位更具可重复性,必要时便于气道通路的建立,以实施患者镇静。使用CT模拟可缩短模拟时间,提高计划准确性,并能进行多模态图像配准和三维治疗计划。使用不对称准直器叶片可实现射野衔接羽化,而无需改变患者体位或使用治疗床角度。