Suppr超能文献

生物分析方法验证过程中评估回归模型的一种新方法。

A new approach to evaluate regression models during validation of bioanalytical assays.

作者信息

Singtoroj T, Tarning J, Annerberg A, Ashton M, Bergqvist Y, White N J, Lindegardh N, Day N P J

机构信息

Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

出版信息

J Pharm Biomed Anal. 2006 Apr 11;41(1):219-27. doi: 10.1016/j.jpba.2005.11.006. Epub 2005 Dec 5.

Abstract

The quality of bioanalytical data is highly dependent on using an appropriate regression model for calibration curves. Non-weighted linear regression has traditionally been used but is not necessarily the optimal model. Bioanalytical assays generally benefit from using either data transformation and/or weighting since variance normally increases with concentration. A data set with calibrators ranging from 9 to 10000 ng/mL was used to compare a new approach with the traditional approach for selecting an optimal regression model. The new approach used a combination of relative residuals at each calibration level together with precision and accuracy of independent quality control samples over 4 days to select and justify the best regression model. The results showed that log-log transformation without weighting was the simplest model to fit the calibration data and ensure good predictability for this data set.

摘要

生物分析数据的质量高度依赖于为校准曲线使用适当的回归模型。传统上使用的是非加权线性回归,但它不一定是最佳模型。由于方差通常随浓度增加,生物分析测定通常通过使用数据转换和/或加权而受益。使用校准物范围为9至10000 ng/mL的数据集,将一种新方法与选择最佳回归模型的传统方法进行比较。新方法结合了每个校准水平的相对残差以及4天内独立质量控制样品的精密度和准确度,以选择并证明最佳回归模型。结果表明,不加权的对数-对数转换是拟合校准数据并确保该数据集具有良好可预测性的最简单模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验