Poznanović Slobodan, Wozny Wojciech, Schwall Gerhard P, Sastri Chaturvedula, Hunzinger Christian, Stegmann Werner, Schrattenholz André, Buchner Alexander, Gangnus Rainer, Burgemeister Renate, Cahill Michael A
ProteoSys AG, Carl Zeiss Strasse 51, 55129 Mainz, Germany.
J Proteome Res. 2005 Nov-Dec;4(6):2117-25. doi: 10.1021/pr050218q.
We present a proof of principle study, using laser microdissection and pressure catapulting (LMPC) of two clinical tissue samples, each containing approximately 3.8 microg renal cell carcinoma protein and 3.8 microg normal kidney protein respectively from one patient. The study involved separate radio-iodination of each sample with both (125)I and (131)I, dual inverse replicate sample loading to high resolution 54 cm "daisy chain" serial immobilized pH gradient isoelectric focusing (IPG-IEF) 2D-PAGE gels, co-electrophoretic separation of cross-labeled proteins from different samples, and precision multiplex differential radioactive imaging to obtain signals specific for each sample coelectrophoresed within single gels but labeled with different isotopes of iodine, providing extremely precise intra-gel estimates of the abundance ratio for protein spots from both samples. Twelve multiplexed analytical radioactive SDS-gels from 4 serial IPG-IEF gels provided 24 individual radioactive images for a comprehensive analytical protein multiplex quantification study. A further 12 SDS gels containing (125)I-labeled sample were coelectrophoresed with preparative protein amounts obtained from whole tissue sections for the mass spectrometric identification of comigrating proteins. This consumed <40% of the (125)I-labeled sample, and <20% of the (131)I-labeled sample from the respective original 3.8 microg samples. Twenty-nine proteins were identified by mass spectrometry with PMF scores >70 that were >2-fold differentially abundant between the samples and t-test probabilities <0.05. We conclude that this combination of technologies provides excellent quality protein multiplex data for the differential abundance analysis of large numbers of proteins from extremely small samples, and is applicable to a broad range of clinical and related applications.
我们展示了一项原理验证研究,使用激光显微切割和压力弹射技术(LMPC)处理两份临床组织样本,每份样本分别含有来自同一名患者的约3.8微克肾细胞癌蛋白和约3.8微克正常肾组织蛋白。该研究包括分别用¹²⁵I和¹³¹I对每个样本进行放射性碘化,将双重反向重复样本加载到高分辨率54厘米“雏菊链”串联固定pH梯度等电聚焦(IPG-IEF)二维聚丙烯酰胺凝胶电泳(2D-PAGE)凝胶上,对来自不同样本的交叉标记蛋白进行共电泳分离,以及精确的多重差异放射性成像,以获得在单一凝胶中共电泳但用不同碘同位素标记的每个样本的特异性信号,从而对两个样本的蛋白斑点丰度比进行极其精确的凝胶内估计。来自4个串联IPG-IEF凝胶的12个多重分析放射性十二烷基硫酸钠凝胶提供了24张单独的放射性图像,用于全面的分析性蛋白多重定量研究。另外12个含有¹²⁵I标记样本的十二烷基硫酸钠凝胶与从整个组织切片中获得的制备量蛋白进行共电泳,用于质谱鉴定共迁移蛋白。这分别消耗了各自原始3.8微克样本中<40%的¹²⁵I标记样本和<20%的¹³¹I标记样本。通过质谱鉴定出29种蛋白质,其肽质量指纹图谱(PMF)得分>70,样本间差异丰度>2倍,t检验概率<0.05。我们得出结论,这种技术组合为来自极少量样本的大量蛋白质的差异丰度分析提供了高质量的蛋白多重数据,并且适用于广泛的临床及相关应用。