Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J
Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2005 Dec 8;438(7069):828-32. doi: 10.1038/nature04353.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.
量子信息科学中各种不同应用的一个关键要求是能够在复杂的量子网络中传播量子资源。例如,纠缠量子态与量子存储器(用于存储态)的相干分布可以实现用于量子计算、通信和计量的可扩展架构。在此,我们报告了位于不同空间分离设置中的两个原子系综之间纠缠的观测结果。对其中一个样品发射的光子进行探测时的量子干涉将原本独立的系综投影到一个纠缠态,其中一个联合激发远程存储在每个位点的10⁵个原子中。经过可编程延迟后,我们通过将原子态映射到光场并测量这些场的相互相干性和光子统计来确认纠缠。由此,我们确定了系综联合态纠缠的定量下限。我们的观测结果代表了在分布和存储纠缠量子态能力方面的重大进展。