Suppr超能文献

大肠杆菌的亲和固定化:完整和可渗透细胞结合淀粉的催化作用。

Affinity Immobilization of Escherichia coli: Catalysis by Intact and Permeable Cells Bound to Starch.

机构信息

Department of Microbiology, University of Sydney, New South Wales 2006, Australia.

出版信息

Appl Environ Microbiol. 1983 Feb;45(2):384-8. doi: 10.1128/aem.45.2.384-388.1983.

Abstract

The binding of viable Escherichia coli cells to an immobilized ligand of a surface receptor for maltodextrins has recently been demonstrated (T. Ferenci and K. S. Lee, J. Mol. Biol. 160:431-444, 1982). The interaction of bacteria and ligand immobilized in a chromatographic column was investigated over a wide range of applied cell densities, temperatures, eluant pH values, osmotic concentrations, and flow rates. Over 95% retention of bacteria applied to starch-Sepharose was found at cell densities up to 10 per ml of matrix, between pH 5.5 and 8.0, between 8 and 55 degrees C, in the presence of 0 to 0.5 M NaCl, and at elution flow rates up to 37 column volumes per h. The catalytic capability and stability of affinity-immobilized cells was demonstrated with the cytoplasmic beta-galactosidase activity of starch-bound cells. Intact immobilized bacteria exhibited slowly increasing beta-galactosidase activity over several days with a plateau after 6 days. Bacteria made permeable by treatment with toluene were also bound to starch-Sepharose but showed maximum beta-galactosidase activity within 1 day and exhibited no loss of enzyme activity in 8 days of continuous elution at ambient temperatures.

摘要

最近已经证明了活的大肠杆菌细胞与麦芽糊精表面受体的固定配体的结合(T. Ferenci 和 K. S. Lee,J. Mol. Biol. 160:431-444,1982)。在广泛的应用细胞密度、温度、洗脱 pH 值、渗透压浓度和流速范围内,研究了固定在色谱柱中的细菌和配体之间的相互作用。在基质中细胞密度高达 10 个/ml 的情况下,在 pH 值为 5.5 到 8.0 之间,在 8 到 55 摄氏度之间,在 0 到 0.5 M NaCl 存在下,在洗脱流速高达 37 个柱体积/小时的情况下,发现高达 95%的细菌被淀粉-Sepharose 保留。通过淀粉结合细胞的细胞质β-半乳糖苷酶活性证明了亲和固定化细胞的催化能力和稳定性。完整的固定化细菌在几天内表现出缓慢增加的β-半乳糖苷酶活性,在 6 天后达到平台期。用甲苯处理使细菌通透的细菌也能与淀粉-Sepharose 结合,但在环境温度下连续洗脱 8 天内,最大β-半乳糖苷酶活性在 1 天内达到,酶活性没有损失。

相似文献

1
Affinity Immobilization of Escherichia coli: Catalysis by Intact and Permeable Cells Bound to Starch.
Appl Environ Microbiol. 1983 Feb;45(2):384-8. doi: 10.1128/aem.45.2.384-388.1983.
3
Immobilization of yeast cells containing beta-galactosidase.
Biotechnol Bioeng. 1982 Aug;24(8):1839-50. doi: 10.1002/bit.260240810.
5
Immobilization of the tetrameric and monomeric forms of pigeon liver malic enzyme on Sepharose beads.
Eur J Biochem. 1993 May 1;213(3):1159-65. doi: 10.1111/j.1432-1033.1993.tb17866.x.
6
Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets.
Int J Biol Macromol. 2018 Jul 15;114:504-511. doi: 10.1016/j.ijbiomac.2018.03.081. Epub 2018 Mar 21.
7
Immobilized preparation of cold-adapted and halotolerant Antarctic beta-galactosidase as a highly stable catalyst in lactose hydrolysis.
FEMS Microbiol Ecol. 2007 Feb;59(2):535-42. doi: 10.1111/j.1574-6941.2006.00208.x. Epub 2006 Oct 24.
8
Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry.
Appl Microbiol Biotechnol. 2021 May;105(9):3601-3610. doi: 10.1007/s00253-021-11325-8. Epub 2021 May 3.
10
Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: A safer way towards its industrial application.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Feb 5;226:117637. doi: 10.1016/j.saa.2019.117637. Epub 2019 Oct 9.

本文引用的文献

1
Use of immobilized cells.
Annu Rev Biophys Bioeng. 1981;10:197-216. doi: 10.1146/annurev.bb.10.060181.001213.
5
Directed evolution of the lambda receptor of Escherichia coli through affinity chromatographic selection.
J Mol Biol. 1982 Sep 25;160(3):431-44. doi: 10.1016/0022-2836(82)90306-0.
7
Escherichia coli mutants impaired in maltodextrin transport.
J Bacteriol. 1979 Oct;140(1):1-13. doi: 10.1128/jb.140.1.1-13.1979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验