Suppr超能文献

运动发酵单胞菌生产乙醛。

Production of Acetaldehyde by Zymomonas mobilis.

机构信息

Department of Food Science, New York State College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853.

出版信息

Appl Environ Microbiol. 1987 Dec;53(12):2815-20. doi: 10.1128/aem.53.12.2815-2820.1987.

Abstract

Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.

摘要

通过连续使用更高浓度的烯丙醇,选择了运动发酵单胞菌的突变体,以降低其醇脱氢酶的活性。在含有 4.0%(重量/重量)葡萄糖的培养基中,通过通气分批培养,用 100 mM 烯丙醇选择出的一种突变体,当生物体生长时,乙醛的产量达到了 4.08 g/L。根据葡萄糖的利用量,这一乙醛产量接近最大理论产量的 40%。在生长过程中产生的乙醛不断从反应器中被空气汽提出来。然后,废气中的乙醛被作为乙醛-亚硫酸氢盐加成产物在亚硫酸氢钠的水溶液中捕获,并通过用碱处理而释放出来。研究发现,乙醛在浓度低至 0.05%(重量/重量)的情况下就会抑制运动发酵单胞菌的生长。在用亚硝胍诱变和在气相乙醛存在下选择之后,分离出了一种耐乙醛的运动发酵单胞菌突变体。与乙醇相比,乙醛的生产具有以下潜在优势:产品分离所需的能量更低,从稀进料流中有效分离产品,从反应器中连续分离产品,以及更高的市场价值。

相似文献

1
Production of Acetaldehyde by Zymomonas mobilis.
Appl Environ Microbiol. 1987 Dec;53(12):2815-20. doi: 10.1128/aem.53.12.2815-2820.1987.
2
Improvement of Acetaldehyde Production in by Engineering of Its Aerobic Metabolism.
Front Microbiol. 2019 Nov 14;10:2533. doi: 10.3389/fmicb.2019.02533. eCollection 2019.
3
Cell Aggregation and Aerobic Respiration Are Important for ZM4 Survival in an Aerobic Minimal Medium.
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.00193-19. Print 2019 May 15.
5
Electrochemical and biochemical analysis of ethanol fermentation of zymomonas mobilis KCCM11336.
J Microbiol Biotechnol. 2009 Jul;19(7):666-74. doi: 10.4014/jmb.0809.509.
6
Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production.
World J Microbiol Biotechnol. 2020 Jul 13;36(8):112. doi: 10.1007/s11274-020-02885-4.
7
Zymomonas mobilis Mutants with an Increased Rate of Alcohol Production.
Appl Environ Microbiol. 1987 Jul;53(7):1425-32. doi: 10.1128/aem.53.7.1425-1432.1987.
8
Conditions that promote production of lactic acid by Zymomonas mobilis in batch and continuous culture.
Appl Biochem Biotechnol. 1998 Spring;70-72:173-85. doi: 10.1007/BF02920134.
9
NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis.
Microbiology (Reading). 2008 Mar;154(Pt 3):989-994. doi: 10.1099/mic.0.2007/012682-0.
10
Biofilm Reactor for Ethanol Production Using Rice Straw Hydrolysate Under Continuous and Repeated Batch Processes.
Front Microbiol. 2019 Aug 7;10:1777. doi: 10.3389/fmicb.2019.01777. eCollection 2019.

引用本文的文献

2
Zymomonas mobilis ZM4 Utilizes an NADP-Dependent Acetaldehyde Dehydrogenase To Produce Acetate.
J Bacteriol. 2022 Apr 19;204(4):e0056321. doi: 10.1128/jb.00563-21. Epub 2022 Mar 8.
3
Yeast-based production and in situ purification of acetaldehyde.
Bioprocess Biosyst Eng. 2022 Apr;45(4):761-769. doi: 10.1007/s00449-022-02697-w. Epub 2022 Feb 8.
4
Genome Copy Number Quantification Revealed That the Ethanologenic Alpha-Proteobacterium Is Polyploid.
Front Microbiol. 2021 Aug 2;12:705895. doi: 10.3389/fmicb.2021.705895. eCollection 2021.
5
A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis.
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01621-20.
7
Improvement of Acetaldehyde Production in by Engineering of Its Aerobic Metabolism.
Front Microbiol. 2019 Nov 14;10:2533. doi: 10.3389/fmicb.2019.02533. eCollection 2019.
8
Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of .
Front Bioeng Biotechnol. 2019 Nov 12;7:327. doi: 10.3389/fbioe.2019.00327. eCollection 2019.
10
Catalytic Upgrading in Bacteria-Compatible Conditions via a Biocompatible Aldol Condensation.
ACS Sustain Chem Eng. 2016 Mar 7;4(3):671-675. doi: 10.1021/acssuschemeng.5b01590. Epub 2016 Feb 15.

本文引用的文献

1
Characterization of the two alcohol dehydrogenases of Zymomonas mobilis.
Arch Biochem Biophys. 1981 Sep;210(2):775-85. doi: 10.1016/0003-9861(81)90245-9.
2
The two major isozymes of yeast alcohol dehydrogenase.
Eur J Biochem. 1979 Sep;99(2):323-31. doi: 10.1111/j.1432-1033.1979.tb13260.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验