Suppr超能文献

星形胶质细胞在脑血管调节中的作用。

Role of astrocytes in cerebrovascular regulation.

作者信息

Koehler Raymond C, Gebremedhin Debebe, Harder David R

机构信息

Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.

出版信息

J Appl Physiol (1985). 2006 Jan;100(1):307-17. doi: 10.1152/japplphysiol.00938.2005.

Abstract

Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.

摘要

星形胶质细胞将突起延伸至突触和血管,通过缝隙连接并释放三磷酸腺苷(ATP)与其他星形胶质细胞进行交流,因此是神经血管单元不可或缺的组成部分。脑片上的电场刺激显示,星形胶质细胞胞体中的细胞内钙增加并传递至血管周围终足,随后血管平滑肌钙振荡减少,小动脉扩张。神经元激活后星形胶质细胞钙的增加部分是由代谢型谷氨酸受体的激活介导的。体外钙信号传导也可受作用于A2B受体的腺苷以及显示在星形胶质细胞中合成的环氧二十碳三烯酸(EETs)影响。前列腺素、EETs、花生四烯酸和钾离子是星形胶质细胞终足与血管平滑肌之间交流的候选介质。体内证据支持环氧合酶-2代谢产物、EETs、腺苷和神经元衍生的一氧化氮在增加的血流与增加的神经元活动耦合中发挥作用。对EETs、一氧化氮和腺苷途径的联合抑制表明信号传导不是通过平行、独立的途径。间接药理学结果与星形胶质细胞在神经血管单元内神经血管信号传导中充当中间介质一致。对于特定刺激,星形胶质细胞还能够将信号传递至脑表面的软脑膜小动脉,以确保向实质供血小动脉提供足够的流入压力。因此,来自脑片的证据以及体内药理学方法的间接证据表明,星形胶质细胞在调节将脑血流动态变化与神经元突触活动耦合的基本生理反应中起关键作用。未来需要使用体内成像和基因操作的研究来为星形胶质细胞在神经血管耦合中的作用提供更直接的证据。

相似文献

1
Role of astrocytes in cerebrovascular regulation.
J Appl Physiol (1985). 2006 Jan;100(1):307-17. doi: 10.1152/japplphysiol.00938.2005.
2
Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.
J Neurosci. 2016 Dec 14;36(50):12624-12639. doi: 10.1523/JNEUROSCI.1300-16.2016. Epub 2016 Nov 7.
3
Role of astrocytes in matching blood flow to neuronal activity.
Curr Top Dev Biol. 2007;79:75-97. doi: 10.1016/S0070-2153(06)79004-4.
4
Bidirectional control of arteriole diameter by astrocytes.
Exp Physiol. 2011 Apr;96(4):393-9. doi: 10.1113/expphysiol.2010.053132. Epub 2011 Jan 21.
5
Astrocyte control of synaptic transmission and neurovascular coupling.
Physiol Rev. 2006 Jul;86(3):1009-31. doi: 10.1152/physrev.00049.2005.
6
Astrocytes and the regulation of cerebral blood flow.
Trends Neurosci. 2009 Mar;32(3):160-9. doi: 10.1016/j.tins.2008.11.005. Epub 2009 Jan 21.
7
Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
Circ Res. 2004 Nov 12;95(10):e73-81. doi: 10.1161/01.RES.0000148636.60732.2e. Epub 2004 Oct 21.
8
Endothelial influences on cerebrovascular tone.
J Appl Physiol (1985). 2006 Jan;100(1):318-27. doi: 10.1152/japplphysiol.00937.2005.
9
Astrocyte regulation of blood flow in the brain.
Cold Spring Harb Perspect Biol. 2015 Mar 27;7(5):a020388. doi: 10.1101/cshperspect.a020388.
10
Models of neurovascular coupling via potassium and EET signalling.
J Theor Biol. 2011 Oct 7;286(1):13-23. doi: 10.1016/j.jtbi.2011.07.006. Epub 2011 Jul 20.

引用本文的文献

3
Mitochondrial DNA and Inflammation in Alzheimer's Disease.
Curr Issues Mol Biol. 2023 Oct 25;45(11):8586-8606. doi: 10.3390/cimb45110540.
4
Astrocytes: new evidence, new models, new roles.
Biophys Rev. 2023 Oct 18;15(5):1303-1333. doi: 10.1007/s12551-023-01145-7. eCollection 2023 Oct.
5
The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models.
Biomedicines. 2023 Oct 18;11(10):2825. doi: 10.3390/biomedicines11102825.
6
Stroke-induced damage on the blood-brain barrier.
Front Neurol. 2023 Sep 28;14:1248970. doi: 10.3389/fneur.2023.1248970. eCollection 2023.
7
Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).
Cells. 2023 Aug 23;12(17):2132. doi: 10.3390/cells12172132.
8
Correlation of C-reactive Protein with Delirium in Obstetrics Intensive Care Unit: A Tertiary Center Experience.
Indian J Crit Care Med. 2023 May;27(5):315-321. doi: 10.5005/jp-journals-10071-24455.
9
Single nucleotide polymorphisms in aquaporin-4 associate with cognitive impairment status in people with HIV.
J Neurovirol. 2023 Jun;29(3):258-271. doi: 10.1007/s13365-023-01126-2. Epub 2023 May 16.
10
Astrocytic mitochondrial frataxin-A promising target for ischemic brain injury.
CNS Neurosci Ther. 2023 Mar;29(3):783-788. doi: 10.1111/cns.14068. Epub 2022 Dec 22.

本文引用的文献

1
Perivascular nerves and the regulation of cerebrovascular tone.
J Appl Physiol (1985). 2006 Mar;100(3):1059-64. doi: 10.1152/japplphysiol.00954.2005.
2
Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease.
J Appl Physiol (1985). 2006 Jan;100(1):328-35. doi: 10.1152/japplphysiol.00966.2005.
3
Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex.
Science. 2005 Aug 5;309(5736):951-4. doi: 10.1126/science.1110913.
4
Hemodynamic signals correlate tightly with synchronized gamma oscillations.
Science. 2005 Aug 5;309(5736):948-51. doi: 10.1126/science.1110948.
5
ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia.
Neurochem Int. 2005 Nov;47(6):442-8. doi: 10.1016/j.neuint.2005.05.014.
6
Connexin-based gap junction hemichannels: gating mechanisms.
Biochim Biophys Acta. 2005 Jun 10;1711(2):215-24. doi: 10.1016/j.bbamem.2005.01.014. Epub 2005 Mar 2.
7
Calcium increases in retinal glial cells evoked by light-induced neuronal activity.
J Neurosci. 2005 Jun 8;25(23):5502-10. doi: 10.1523/JNEUROSCI.1354-05.2005.
9
Arachidonic acid metabolites, hydrogen peroxide, and EDHF in cerebral arteries.
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1077-83. doi: 10.1152/ajpheart.01046.2004. Epub 2005 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验