Suppr超能文献

主动脉瓣叶在瓣叶联合区的抗弯刚度。

The flexural rigidity of the aortic valve leaflet in the commissural region.

作者信息

Mirnajafi Ali, Raymer Jeremy M, McClure Leigh R, Sacks Michael S

机构信息

Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, 100 Technology drive, Room 234, Pittsburgh, PA 15219, USA.

出版信息

J Biomech. 2006;39(16):2966-73. doi: 10.1016/j.jbiomech.2005.10.026. Epub 2005 Dec 19.

Abstract

Flexure is a major deformation mode of the aortic valve (AV) leaflet, particularly in the commissural region where the upper portion of the leaflet joins the aortic root. However, there are no existing data known on the mechanical properties of leaflet in the commissural region. To address this issue, we quantified the effective stiffness of the commissural region using a cantilever beam method. Ten specimens were prepared, with each specimen flexed in the direction of natural leaflet motion (forward) and against the natural motion (reverse). At a flexure angle (phi) of 30 degrees , the effective forward direction modulus E was 42.63+/-4.44 kPa and the reverse direction E was 75.01+/-14.53 kPa (p=0.049). Further, E-phi response was linear (r(2) approximately 0.9) in both flexural directions. Values for dE/dphi were -2.24+/-0.6 kPa/ degrees and -1.90+/-0.3 kPa/ degrees in the forward and reverse directions, respectively (not statistically different, p=0.424), indicating a consistent decrease in stiffness with increased flexure. In comparison, we have reported that the effective tissue stiffness of AV leaflet belly region was 150-200 kPa [Merryman, W.D., Huang, H.Y.S., Schoen, F.J., Sacks, M.S. (2006). The effects of cellular contraction on AV leaflet flexural stiffness. Journal of Biomechanics 39 (1), 88-96], which was also independent of direction and amount of flexure. Histological studies of the commissure region indicated that tissue buckling was a probable mechanism for decrease in E with increasing flexure. The observed change in E with flexural angle in the commissural region is a subtle aspect of valve function. From a valve design perspective, these findings can be used as design criteria in fabricating prosthetic devices AV resulting in better functional performance.

摘要

弯曲是主动脉瓣(AV)瓣叶的一种主要变形模式,尤其是在瓣叶上部与主动脉根部相连的联合区域。然而,目前尚无关于联合区域瓣叶力学性能的现有数据。为了解决这个问题,我们使用悬臂梁方法对联合区域的有效刚度进行了量化。制备了10个标本,每个标本分别沿瓣叶自然运动方向(向前)和与自然运动方向相反(向后)进行弯曲。在30度的弯曲角度(phi)下,有效向前方向模量E为42.63±4.44 kPa,向后方向E为75.01±14.53 kPa(p = 0.049)。此外,在两个弯曲方向上,E-phi响应均呈线性(r²约为0.9)。向前和向后方向上dE/dphi的值分别为-2.24±0.6 kPa/度和-1.90±0.3 kPa/度(无统计学差异,p = 0.424),表明随着弯曲增加刚度持续降低。相比之下,我们曾报道AV瓣叶腹部区域的有效组织刚度为150 - 200 kPa[梅里曼,W.D.,黄,H.Y.S.,舍恩,F.J.,萨克斯,M.S.(2006年)。细胞收缩对AV瓣叶弯曲刚度的影响。《生物力学杂志》39(1),88 - 96],其也与弯曲方向和弯曲量无关。联合区域的组织学研究表明,组织屈曲可能是随着弯曲增加E降低的机制。联合区域中观察到的E随弯曲角度的变化是瓣膜功能的一个微妙方面。从瓣膜设计的角度来看,这些发现可作为制造人工主动脉瓣装置的设计标准,从而实现更好的功能性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验