Hewett Jeffrey W, Zeng Juan, Niland Brian P, Bragg D Cristopher, Breakefield Xandra O
Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
Neurobiol Dis. 2006 Apr;22(1):98-111. doi: 10.1016/j.nbd.2005.10.012. Epub 2005 Dec 19.
Early onset torsion dystonia is a movement disorder inherited as an autosomal dominant syndrome with reduced penetrance. Symptoms appear to result from altered neuronal circuitry within the brain with no evidence of neuronal loss. Most cases are caused by loss of a glutamic acid residue in the AAA+ chaperone protein, torsinA, encoded in the DYT1 gene. In this study, torsinA was found to move in conjunction with vimentin in three cell culture paradigms-recovery from microtubule depolymerization, expression of a dominant-negative form of kinesin light chain and respreading after trypsinization. Co-immune precipitation studies revealed association between vimentin and torsinA in a complex including other cytoskeletal elements, actin and tubulin, as well as two proteins previously shown to interact with torsinA-the motor protein, kinesin light chain 1, and the nuclear envelope protein, LAP1. Morphologic and functional differences related to vimentin were noted in primary fibroblasts from patients carrying this DYT1 mutation as compared with controls, including an increased perinuclear concentration of vimentin and a delayed rate of adhesion to the substratum. Overexpression of mutant torsinA inhibited neurite extension in human neuroblastoma cells, with torsinA and vimentin immunoreactivity enriched in the perinuclear region and in cytoplasmic inclusions. Collectively, these studies suggest that mutant torsinA interferes with cytoskeletal events involving vimentin, possibly by restricting movement of these particles/filaments, and hence may affect development of neuronal pathways in the brain.
早发性扭转性肌张力障碍是一种遗传性运动障碍,呈常染色体显性遗传综合征,外显率降低。症状似乎是由大脑内神经元回路改变引起的,没有神经元丢失的证据。大多数病例是由DYT1基因编码的AAA +伴侣蛋白扭转蛋白A中谷氨酸残基的缺失所致。在本研究中,在三种细胞培养模式下发现扭转蛋白A与波形蛋白一起移动,这三种模式分别是从微管解聚中恢复、表达驱动蛋白轻链的显性负性形式以及胰蛋白酶消化后重新铺展。免疫共沉淀研究揭示了波形蛋白与扭转蛋白A在一个复合物中的关联,该复合物包括其他细胞骨架成分、肌动蛋白和微管蛋白,以及先前已显示与扭转蛋白A相互作用的两种蛋白质——运动蛋白驱动蛋白轻链1和核膜蛋白LAP1。与对照组相比,携带这种DYT1突变的患者的原代成纤维细胞中,与波形蛋白相关的形态学和功能差异被注意到,包括波形蛋白在核周浓度增加以及与基质的黏附速率延迟。突变型扭转蛋白A的过表达抑制了人神经母细胞瘤细胞中的神经突延伸,扭转蛋白A和波形蛋白免疫反应性在核周区域和细胞质内含物中富集。总体而言,这些研究表明,突变型扭转蛋白A可能通过限制这些颗粒/细丝的移动来干扰涉及波形蛋白的细胞骨架事件,因此可能影响大脑中神经元通路的发育。