Furukawa Toru, Sunamura Makoto, Horii Akira
Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
Cancer Sci. 2006 Jan;97(1):1-7. doi: 10.1111/j.1349-7006.2005.00134.x.
Pancreatic ductal adenocarcinoma is one of the most fatal malignancies. Intensive investigation of molecular pathogenesis might lead to identifying useful molecules for diagnosis and treatment of the disease. Pancreatic ductal adenocarcinoma harbors complicated aberrations of alleles including losses of 1p, 6q, 9p, 12q, 17p, 18q, and 21q, and gains of 8q and 20q. Pancreatic cancer is usually initiated by mutation of KRAS and aberrant expression of SHH. Overexpression of AURKA mapping on 20q13.2 may significantly enhance overt tumorigenesity. Aberrations of tumor suppressor genes synergistically accelerate progression of the carcinogenic pathway through pancreatic intraepithelial neoplasia (PanIN) to invasive ductal adenocarcinoma. Abrogation of CDKN2A occurs in low-grade/early PanIN, whereas aberrations of TP53 and SMAD4 occur in high-grade/late PanIN. SMAD4 may play suppressive roles in tumorigenesis by inhibition of angiogenesis. Loss of 18q precedes SMAD4 inactivation, and restoration of chromosome 18 in pancreatic cancer cells results in tumor suppressive phenotypes regardless of SMAD4 status, indicating the possible existence of a tumor suppressor gene(s) other than SMAD4 on 18q. DUSP6 at 12q21-q22 is frequently abrogated by loss of expression in invasive ductal adenocarcinomas despite fairly preserved expression in PanIN, which suggests that DUSP6 works as a tumor suppressor in pancreatic carcinogenesis. Restoration of chromosome 12 also suppresses growths of pancreatic cancer cells despite the recovery of expression of DUSP6; the existence of yet another tumor suppressor gene on 12q is strongly suggested. Understanding the molecular mechanisms of pancreatic carcinogenesis will likely provide novel clues for preventing, detecting, and ultimately curing this life-threatening disease.
胰腺导管腺癌是最致命的恶性肿瘤之一。对分子发病机制的深入研究可能有助于识别出对该疾病诊断和治疗有用的分子。胰腺导管腺癌存在复杂的等位基因畸变,包括1p、6q、9p、12q、17p、18q和21q的缺失,以及8q和20q的增益。胰腺癌通常由KRAS突变和SHH异常表达引发。位于20q13.2的AURKA过表达可能会显著增强明显的肿瘤发生能力。肿瘤抑制基因的畸变通过胰腺上皮内瘤变(PanIN)协同加速致癌途径向浸润性导管腺癌的进展。CDKN2A的缺失发生在低级别/早期PanIN中,而TP53和SMAD4的畸变发生在高级别/晚期PanIN中。SMAD4可能通过抑制血管生成在肿瘤发生中发挥抑制作用。18q的缺失先于SMAD4失活,并且胰腺癌细胞中18号染色体的恢复会导致肿瘤抑制表型,无论SMAD4状态如何,这表明18q上可能存在除SMAD4之外的其他肿瘤抑制基因。尽管在PanIN中表达相当保留,但位于12q21 - q22的DUSP6在浸润性导管腺癌中经常因表达缺失而被消除,这表明DUSP6在胰腺癌发生中起肿瘤抑制作用。12号染色体的恢复也会抑制胰腺癌细胞的生长,尽管DUSP6的表达恢复了;强烈提示12q上还存在另一个肿瘤抑制基因。了解胰腺癌发生的分子机制可能会为预防、检测并最终治愈这种危及生命的疾病提供新的线索。