Suppr超能文献

用于灰度图像分割的双向标记与配准方案

Bidirectional labeling and registration scheme for grayscale image segmentation.

作者信息

Ma Lei, Zhang Xiao-Ping, Si Jennie, Abousleman Glen P

机构信息

Department of Electrical Engineering, Arizona Sate University, Temple, AZ 85287, USA.

出版信息

IEEE Trans Image Process. 2005 Dec;14(12):2073-81. doi: 10.1109/tip.2005.857277.

Abstract

In this paper, we introduce a new image segmentation scheme that is based on bidirectional labeling and registration and prove that its segmentation performance is equivalent to that of the conventional watershed segmentation algorithm. The proposed bidirectional labeling and registration scheme, which we refer to as bidirectional labeling and registration scheme (BIDS), involves only linear scans of image pixels. It uses one-dimensional operations rather than the queues that are used in traditional segmentation algorithms, which are two-dimensional problems. BIDS also provides unique labels for individual homogeneous regions. In addition to achieving the same segmentation results, BIDS is four times less computationally complex than the conventional watershed by immersion technique.

摘要

在本文中,我们介绍了一种基于双向标记和配准的新图像分割方案,并证明其分割性能与传统分水岭分割算法相当。所提出的双向标记和配准方案,我们称之为双向标记和配准方案(BIDS),仅涉及对图像像素的线性扫描。它使用一维操作,而不是传统分割算法中使用的队列,传统分割算法是二维问题。BIDS还为各个同质区域提供唯一标签。除了获得相同的分割结果外,BIDS的计算复杂度比传统的浸入式分水岭算法低四倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验