Suppr超能文献

利用数据库衍生的距离约束对核磁共振测定的蛋白质结构进行优化。

Refinement of NMR-determined protein structures with database derived distance constraints.

作者信息

Cui Feng, Jernigan Robert, Wu Zhijun

机构信息

Program on Bioinformatics and Computational Biology, Iowa Sate University, Ames, Iowa 50011, USA.

出版信息

J Bioinform Comput Biol. 2005 Dec;3(6):1315-29. doi: 10.1142/s0219720005001582.

Abstract

The protein structures determined by NMR (Nuclear Magnetic Resonance Spectroscopy) are not as detailed and accurate as those by X-ray crystallography and are often underdetermined due to the inadequate distance data available from NMR experiments. The uses of NMR-determined structures in such important applications as homology modeling and rational drug design have thus been severely limited. Here we show that with the increasing numbers of high quality protein structures being determined, a computational approach to enhancing the accuracy of the NMR-determined structures becomes possible by deriving additional distance constraints from the distributions of the distances in databases of known protein structures. We show through a survey on 462 NMR structures that, in fact, many inter-atomic distances in these structures deviate considerably from their database distributions and based on the refinement results on 10 selected NMR structures that these structures can actually be improved significantly when a selected set of distances are constrained within their high probability ranges in their database distributions.

摘要

通过核磁共振光谱法(NMR)确定的蛋白质结构不像通过X射线晶体学确定的那样详细和准确,并且由于NMR实验可获得的距离数据不足,这些结构往往无法得到充分确定。因此,NMR确定的结构在同源建模和合理药物设计等重要应用中的使用受到了严重限制。在这里,我们表明,随着越来越多高质量蛋白质结构被确定,通过从已知蛋白质结构数据库中的距离分布推导额外的距离约束,一种提高NMR确定结构准确性的计算方法变得可行。我们通过对462个NMR结构的调查表明,实际上这些结构中的许多原子间距离与其数据库分布有很大偏差,并且基于对10个选定NMR结构的优化结果表明,当一组选定的距离被限制在其数据库分布的高概率范围内时,这些结构实际上可以得到显著改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验