Suppr超能文献

全基因组计算比较基因组学:确定Alu插入多态性的有效方法。

Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms.

作者信息

Wang Jianxin, Song Lei, Gonder M Katherine, Azrak Sami, Ray David A, Batzer Mark A, Tishkoff Sarah A, Liang Ping

机构信息

Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.

出版信息

Gene. 2006 Jan 3;365:11-20. doi: 10.1016/j.gene.2005.09.031. Epub 2006 Jan 10.

Abstract

Alu elements are the most active and predominant type of short interspersed elements (SINEs) in the human genome. Recently inserted polymorphic (for presence/absence) Alu elements contribute to genome diversity among different human populations, and they are useful genetic markers for population genetic studies. The objective of this study is to identify polymorphic Alu insertions through an in silico comparative genomics approach and to analyze their distribution pattern throughout the human genome. By computationally comparing the public and Celera sequence assemblies of the human genome, we identified a total of 800 polymorphic Alu elements. We used polymerase chain reaction-based assays to screen a randomly selected set of 16 of these 800 Alu insertion polymorphisms using a human diversity panel to demonstrate the efficiency of our approach. Based on sequence analysis of the 800 Alu polymorphisms, we report three new Alu subfamilies, Ya3, Ya4b, and Yb11, with Yb11 being the smallest known Alu subfamily. Analysis of retrotransposition activity revealed Yb11, Ya8, Ya5, Yb9, and Yb8 as the most active Alu subfamilies and the maintenance of a very low level of retrotransposition activity or recent gene conversion events involving S subfamilies. The 800 polymorphic Alu insertions are characterized by the presence of target site duplications (TSDs) and longer than average polyA-tail length. Their pre-integration sites largely follow an extended "NT-AARA" motif. Among chromosomes, the density of Alu insertion polymorphisms is positively correlated with the Alu-site availability and is inversely correlated with the densities of older Alu elements and genes.

摘要

Alu元件是人类基因组中最活跃、最主要的短散在元件(SINEs)类型。最近插入的多态性(存在/缺失)Alu元件有助于不同人类群体间的基因组多样性,并且它们是群体遗传学研究中有用的遗传标记。本研究的目的是通过计算机比较基因组学方法鉴定多态性Alu插入,并分析它们在整个人类基因组中的分布模式。通过对人类基因组的公共序列和Celera序列组装进行计算机比较,我们共鉴定出800个多态性Alu元件。我们使用基于聚合酶链反应的检测方法,利用人类多样性样本对这800个Alu插入多态性中的16个进行随机筛选,以证明我们方法的有效性。基于对这800个Alu多态性的序列分析,我们报告了三个新的Alu亚家族,即Ya3、Ya4b和Yb11,其中Yb11是已知最小的Alu亚家族。逆转录转座活性分析显示,Yb11、Ya8、Ya5、Yb9和Yb8是最活跃的Alu亚家族,并且S亚家族的逆转录转座活性维持在非常低的水平或存在近期的基因转换事件。这800个多态性Alu插入的特征是存在靶位点重复(TSD)且多聚腺苷酸尾长度长于平均水平。它们的整合前位点在很大程度上遵循扩展的“NT - AARA”基序。在染色体中,Alu插入多态性的密度与Alu位点可用性呈正相关,与较老的Alu元件和基因的密度呈负相关。

相似文献

1
Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms.
Gene. 2006 Jan 3;365:11-20. doi: 10.1016/j.gene.2005.09.031. Epub 2006 Jan 10.
3
Recently integrated Alu elements and human genomic diversity.
Mol Biol Evol. 2003 Aug;20(8):1349-61. doi: 10.1093/molbev/msg150. Epub 2003 May 30.
4
Identification of human-specific AluS elements through comparative genomics.
Gene. 2015 Jan 25;555(2):208-16. doi: 10.1016/j.gene.2014.11.005. Epub 2014 Nov 7.
5
Analysis of the human Alu Ya-lineage.
J Mol Biol. 2004 Sep 3;342(1):109-18. doi: 10.1016/j.jmb.2004.07.016.
6
High-resolution cartography of recently integrated human chromosome 19-specific Alu fossils.
J Mol Biol. 1998 Sep 4;281(5):843-56. doi: 10.1006/jmbi.1998.1984.
7
Genome-wide analysis of the human Alu Yb-lineage.
Hum Genomics. 2004 Mar;1(3):167-78. doi: 10.1186/1479-7364-1-3-167.
8
Tandem insertions of Alu elements.
Cytogenet Genome Res. 2005;108(1-3):58-62. doi: 10.1159/000080802.
9
Active Alu element "A-tails": size does matter.
Genome Res. 2002 Sep;12(9):1333-44. doi: 10.1101/gr.384802.

引用本文的文献

1
The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition.
F1000Res. 2024 May 29;12:255. doi: 10.12688/f1000research.130043.3. eCollection 2023.
2
Transposable elements that have recently been mobile in the human genome.
BMC Genomics. 2021 Nov 3;22(1):789. doi: 10.1186/s12864-021-08085-0.
3
Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective.
Int J Mol Sci. 2020 Apr 18;21(8):2838. doi: 10.3390/ijms21082838.
6
A Two-State Model of Tree Evolution and Its Applications to Alu Retrotransposition.
Syst Biol. 2018 May 1;67(3):475-489. doi: 10.1093/sysbio/syx088.
8
Discovery and characterization of Alu repeat sequences via precise local read assembly.
Nucleic Acids Res. 2015 Dec 2;43(21):10292-307. doi: 10.1093/nar/gkv1089. Epub 2015 Oct 25.
9
PopAlu: population-scale detection of Alu polymorphisms.
PeerJ. 2015 Sep 22;3:e1269. doi: 10.7717/peerj.1269. eCollection 2015.

本文引用的文献

2
Inference of human geographic origins using Alu insertion polymorphisms.
Forensic Sci Int. 2005 Oct 29;153(2-3):117-24. doi: 10.1016/j.forsciint.2004.10.017.
3
The Alu Yc1 subfamily: sorting the wheat from the chaff.
Cytogenet Genome Res. 2005;110(1-4):537-42. doi: 10.1159/000084986.
4
Analysis of the human Alu Ye lineage.
BMC Evol Biol. 2005 Feb 22;5:18. doi: 10.1186/1471-2148-5-18.
6
Genome-wide analysis of the human Alu Yb-lineage.
Hum Genomics. 2004 Mar;1(3):167-78. doi: 10.1186/1479-7364-1-3-167.
7
Identity by descent and DNA sequence variation of human SINE and LINE elements.
Cytogenet Genome Res. 2005;108(1-3):63-72. doi: 10.1159/000080803.
8
Natural genetic variation caused by transposable elements in humans.
Genetics. 2004 Oct;168(2):933-51. doi: 10.1534/genetics.104.031757.
9
Analysis of the human Alu Ya-lineage.
J Mol Biol. 2004 Sep 3;342(1):109-18. doi: 10.1016/j.jmb.2004.07.016.
10
Differential alu mobilization and polymorphism among the human and chimpanzee lineages.
Genome Res. 2004 Jun;14(6):1068-75. doi: 10.1101/gr.2530404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验