Gerbersdorf Sabine Ulrike
Hydraulic Laboratory, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 61, 70550 Stuttgart, Germany.
Toxicon. 2006 Feb;47(2):218-28. doi: 10.1016/j.toxicon.2005.10.019. Epub 2005 Dec 27.
The intracellular localisation of cyanobacterial toxins might well indicate production sites and possible shifts to destination points, thus giving information on possible functions of these toxins within algal cells or at the ecological level beyond. By preparing cells of Microcystis aeruginosa PCC 7806 by cryofixation/cryosectioning and using purified high quality antibodies for immunogold-localisation, excellent ultrastructural integrity and labelling of microcystins was shown. Compared to conventional techniques, including organic solvents, possible dislocation/extraction was significantly minimised, hence, the labelling density was enhanced and the labelling pattern changed. The microcystins were mainly localised within the inner nucleoplasmic area and accumulations of epitopes could be detected around/within intracellular inclusions, such as polyphosphate bodies and carboxysomes. Photosynthetic active radiation (PAR) had a significant effect on microcystin biosynthesis, and the medium light intensity of 25 microE m(-2) s(-1) induced the highest intracellular microcystin contents (up to 160 epitopes per cell and 26 epitopes per microm2). The restriction of the full light spectrum to blue (400-500 nm) or red (>610 nm) wavelengths did not result in any significant effect on microcystin production. However, the subcultures harvested at higher optical densities (>0.5) revealed significantly higher microcystin labelling compared to the less dense cell cultures (OD < 0.5). Altogether, the possibility was discussed whether microcystin might function as an inhibitor of RUBISCO under conditions of C-limitations. The effects of light intensity and cell suspension density on intracellular microcystin shown by immuno-detection matched the pattern of microcystin concentrations determined in parallel by HPLC and ELISA.
蓝藻毒素的细胞内定位很可能指示了其产生位点以及可能向目标位点的转移,从而提供了有关这些毒素在藻类细胞内或更广泛生态层面上可能功能的信息。通过冷冻固定/冷冻切片制备铜绿微囊藻PCC 7806细胞,并使用纯化的高质量抗体进行免疫金定位,显示出了微囊藻毒素优异的超微结构完整性和标记效果。与包括有机溶剂在内的传统技术相比,可能的错位/提取显著减少,因此,标记密度提高且标记模式发生了变化。微囊藻毒素主要定位于核内区域,并且在细胞内包涵体(如多聚磷酸盐体和羧酶体)周围/内部可检测到表位的积累。光合有效辐射(PAR)对微囊藻毒素的生物合成有显著影响,25 μmol m⁻² s⁻¹ 的中等光照强度诱导了最高的细胞内微囊藻毒素含量(高达每细胞160个表位和每平方微米26个表位)。将全光谱限制在蓝色(400 - 500 nm)或红色(>610 nm)波长对微囊藻毒素的产生没有任何显著影响。然而,与密度较低的细胞培养物(OD < 0.5)相比,在较高光密度(>0.5)下收获的传代培养物显示出显著更高的微囊藻毒素标记。总之,讨论了在碳限制条件下微囊藻毒素是否可能作为核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)抑制剂发挥作用的可能性。免疫检测显示的光照强度和细胞悬浮密度对细胞内微囊藻毒素的影响与通过高效液相色谱(HPLC)和酶联免疫吸附测定(ELISA)平行测定的微囊藻毒素浓度模式相匹配。