Takada Yasunari, Gillenwater Ann, Ichikawa Haruyo, Aggarwal Bharat B
Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
J Biol Chem. 2006 Mar 3;281(9):5612-22. doi: 10.1074/jbc.M507213200. Epub 2005 Dec 23.
Because of its ability to suppress tumor cell proliferation, angiogenesis, and inflammation, the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) is currently in clinical trials. How SAHA mediates its effects is poorly understood. We found that in several human cancer cell lines, SAHA potentiated the apoptosis induced by tumor necrosis factor (TNF) and chemotherapeutic agents and inhibited TNF-induced invasion and receptor activator of NF-kappaB ligand-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. These observations corresponded with the down-regulation of the expression of anti-apoptotic (IAP1, IAP2, X chromosome-linked IAP, Bcl-2, Bcl-x(L), TRAF1, FLIP, and survivin), proliferative (cyclin D1, cyclooxygenase 2, and c-Myc), and angiogenic (ICAM-1, matrix metalloproteinase-9, and vascular endothelial growth factor) gene products. Because several of these genes are regulated by NF-kappaB, we postulated that SAHA mediates its effects by modulating NF-kappaB and found that SAHA suppressed NF-kappaB activation induced by TNF, IL-1beta, okadaic acid, doxorubicin, lipopolysaccharide, H(2)O(2), phorbol myristate acetate, and cigarette smoke; the suppression was not cell type-specific because both inducible and constitutive NF-kappaB activation was inhibited. We also found that SAHA had no effect on direct binding of NF-kappaB to the DNA but inhibited sequentially the TNF-induced activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, IkappaBalpha ubiquitination, IkappaBalpha degradation, p65 phosphorylation, and p65 nuclear translocation. Furthermore, SAHA inhibited the NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TRADD, TRAF2, NF-kappaB-inducing kinase, IkappaBalpha kinase, and the p65 subunit of NF-kappaB. Overall, our results indicated that NF-kappaB and NF-kappaB-regulated gene expression inhibited by SAHA can enhance apoptosis and inhibit invasion and osteoclastogenesis.
由于组蛋白脱乙酰酶抑制剂辛二酰苯胺异羟肟酸(SAHA)具有抑制肿瘤细胞增殖、血管生成和炎症的能力,目前正处于临床试验阶段。SAHA如何介导其作用尚不清楚。我们发现,在几种人类癌细胞系中,SAHA增强了肿瘤坏死因子(TNF)和化疗药物诱导的细胞凋亡,并抑制了TNF诱导的侵袭以及核因子κB受体激活剂配体诱导的破骨细胞生成,所有这些过程都已知需要核因子κB激活。这些观察结果与抗凋亡(IAP1、IAP2、X染色体连锁IAP、Bcl-2、Bcl-x(L)、TRAF1、FLIP和survivin)、增殖(细胞周期蛋白Dl、环氧合酶2和c-Myc)以及血管生成(细胞间黏附分子1、基质金属蛋白酶-9和血管内皮生长因子)基因产物表达的下调相一致。由于这些基因中有几个受核因子κB调控,我们推测SAHA通过调节核因子κB来介导其作用,并发现SAHA抑制了TNF、白细胞介素-1β、冈田酸、阿霉素、脂多糖、H(2)O(2)、佛波酯和香烟烟雾诱导的核因子κB激活;这种抑制作用并非细胞类型特异性的,因为诱导型和组成型核因子κB激活均受到抑制。我们还发现,SAHA对核因子κB与DNA的直接结合没有影响,但依次抑制了TNF诱导的IκBα激酶激活、IκBα磷酸化、IκBα泛素化、IκBα降解、p65磷酸化和p65核转位。此外,SAHA抑制了由TNF、TNFR1、TRADD、TRAF2、核因子κB诱导激酶、IκBα激酶和核因子κB的p65亚基激活的核因子κB依赖性报告基因表达。总体而言,我们的结果表明,SAHA抑制的核因子κB和核因子κB调控的基因表达可增强细胞凋亡并抑制侵袭和破骨细胞生成。