Lebiedz Dirk, Kammerer Julia, Brandt-Pollmann Ulrich
Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041911. doi: 10.1103/PhysRevE.72.041911. Epub 2005 Oct 12.
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
我们介绍了一种数值复杂度降低方法,用于基于由(局部)活跃动力学模式数量表示的最小模型维度的误差控制计算,自动识别和分析(生物)化学动力学中的动态网络分解。我们的算法利用沿状态轨迹的广义灵敏度分析以及灵敏度矩阵的奇异值分解来识别这些主导动力学模式。它允许对动力学模型中的(生物)化学物种进行动态耦合分析,可用于在小时间间隔内对最小模型进行分段计算,并为高度非线性反应机制和网络动力学提供有价值的功能洞察。我们展示了在简单振荡化学反应中网络分解的识别结果、米氏酶系统中基于时间尺度分离的模型简化以及振荡过氧化物酶 - 氧化酶系统详细模型的网络分解结果。