Guo H Y, Hoffman A L, Steinhauer L C, Miller K E
Redmond Plasma Physics Laboratory, University of Washington, Seattle, Washington 98195, USA.
Phys Rev Lett. 2005 Oct 21;95(17):175001. doi: 10.1103/PhysRevLett.95.175001. Epub 2005 Oct 18.
An extremely high-beta (over 85%) self-organized field-reversed configuration (FRC) with a spherical-torus- (ST-)like core is produced in the translation, confinement, and sustainment experiment by highly super-Alfvénic translation of a spheromaklike plasmoid. Substantial flux conversion from toroidal into poloidal occurs during the capture process, resulting in the ST-like core. This plasma state exhibits a remarkable stabilizing property for the ubiquitous centrifugally driven interchange modes present in theta-pinch formed FRCs. This is explained, for the first time, by a simple model taking into account magnetic shear and centrifugal effects. The FRC-ST configuration has up to 4 times improvement in flux confinement times over the scaling of conventional theta-pinch formed FRCs and, thus, a significant improvement in the resistivity and transport.
在一个由类球马克等离子体块进行高超阿尔文速度平移的输运、约束和维持实验中,产生了一种具有类球形环面(ST)核心的极高β值(超过85%)自组织场反向配置(FRC)。在捕获过程中发生了从环向到极向的大量通量转换,从而形成了类ST核心。这种等离子体状态对θ箍缩形成的FRC中普遍存在的离心驱动交换模表现出显著的稳定特性。首次通过一个考虑磁剪切和离心效应的简单模型对此进行了解释。与传统θ箍缩形成的FRC的标度相比,FRC-ST配置的通量约束时间提高了多达4倍,因此,在电阻率和输运方面有显著改善。