Mannini Riccardo, Rivieccio Vincenzo, D'Auria Sabato, Tanfani Fabio, Ausili Alessio, Facchiano Angelo, Pedone Carlo, Grimaldi Giovanna
Istituto di Genetica e Biofisica Adriano Buzzati-Traverso, CNR, Italy.
Proteins. 2006 Mar 15;62(3):604-16. doi: 10.1002/prot.20792.
The abundant zinc finger proteins (ZFPs) sharing the KRAB motif, a potent transcription repression domain, direct the assembly on templates of multiprotein repression complexes. A pivotal step in this pathway is the assembly of a KRAB domain-directed complex with a primary corepressor, KAP1/KRIP-1/TIF1beta. The structure/function dependence of KRAB/TIF1beta protein-protein interaction and properties of the complex, therefore, play pivotal roles in diverse cellular processes depending on KRAB-ZFPs regulation. KRAB domains are functionally bipartite. The 42 amino acid-long KRAB-A module, indeed, is necessary and sufficient for transcriptional repression and for the interaction with the tripartite RBCC region of TIF1beta, while the KRAB-B motif seems to potentiate the assembly of the complex. The structural properties of KRAB-A and KRAB-AB domains from the human ZNF2 protein have been investigated by characterizing highly purified lone (A) and composite (AB) modules. Hydrodynamic and spectroscopic features, investigated by means of gel filtration, circular dichroism, and infrared spectroscopy, provide evidence that both KRAB-A and KRAB-AB domains present low compactness, structural disorder, residual secondary structure content, flexibility, and tendency to molecular aggregation. Comparative analysis among KRAB-A and KRAB-AB modules suggests that the presence of the -B module may influence the properties of lone KRAB-A by affecting the structural flexibility and stability of the conformers. The combined experimental data and the intrinsic features of KRAB-A and KRAB-AB primary structures indicate a potential role of specific subregions within the modules in driving structural flexibility, which is proposed to be of importance for their function.
大量具有KRAB基序的锌指蛋白(ZFPs),一个强大的转录抑制结构域,指导多蛋白抑制复合物在模板上的组装。该途径中的关键步骤是与主要共抑制因子KAP1/KRIP-1/TIF1β组装KRAB结构域导向的复合物。因此,KRAB/TIF1β蛋白-蛋白相互作用的结构/功能依赖性以及复合物的性质,在依赖KRAB-ZFPs调控的多种细胞过程中起着关键作用。KRAB结构域在功能上是二分的。实际上,42个氨基酸长的KRAB-A模块对于转录抑制以及与TIF1β的三方RBCC区域的相互作用是必要且充分的,而KRAB-B基序似乎增强了复合物的组装。通过对高度纯化的单独(A)和复合(AB)模块进行表征,研究了来自人类ZNF2蛋白的KRAB-A和KRAB-AB结构域的结构特性。通过凝胶过滤、圆二色性和红外光谱研究的流体动力学和光谱特征提供了证据,表明KRAB-A和KRAB-AB结构域都具有低紧凑性、结构无序、残余二级结构含量、灵活性和分子聚集倾向。KRAB-A和KRAB-AB模块之间的比较分析表明,-B模块的存在可能通过影响构象体的结构灵活性和稳定性来影响单独的KRAB-A的性质。综合实验数据以及KRAB-A和KRAB-AB一级结构的内在特征表明,模块内特定子区域在驱动结构灵活性方面具有潜在作用,这被认为对它们的功能很重要。