Nischang Ivo, Chen Guofang, Tallarek Ulrich
Institut für Verfahrenstechnik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
J Chromatogr A. 2006 Mar 17;1109(1):32-50. doi: 10.1016/j.chroma.2005.12.027. Epub 2006 Jan 18.
We have investigated the basic dependence of electroosmotic flow (EOF) velocity and hydrodynamic dispersion in capillary electrochromatography (CEC) on the variation of applied field and mobile phase ionic strengths employing silica-based particulate and monolithic fixed beds. These porous media have a hierarchical structure characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains. While the macroporous domains contain quasi-electroneutral electrolyte solution, the ion-permselectivity (charge-selectivity) of the mesoporous domains determines the co-ion exclusion and counter-ion enrichment at electrochemical equilibrium (without superimposed electrical field) which depends on mesopore-scale electrical double layer (EDL) overlap and surface charge density. This adjustable, locally charge-selective transport realized under most general conditions forms the basis for concentration polarization (CP) induced by electrical fields superimposed in CEC. CP characterizes the formation of convective diffusion boundary layers with reduced (depleted CP zone) and increased (enriched CP zone) electrolyte concentration, respectively, at the anodic and cathodic interfaces in fixed beds containing the cation-selective, silica-based particles (or monolith skeleton). CP originates in the electrical field-induced coupled mass and charge transport normal to the charge-selective interfaces and has consequences for the EOF dynamics, hydrodynamic dispersion, and analyte retention in CEC. A secondary EDL with mobile counter-ionic space charge can be induced in the depleted CP zone leading to induced-charge EOF in the macroporous domains. It is characterized by a nonlinear dependence of the average EOF velocities on applied field strength and strong local velocity components tangential to the surface which enhance lateral pore-scale dispersion, thereby decreasing (axial) zone spreading. Differences in the pore space morphology of random-close sphere packings and monoliths criticially affect the intensity of CP and induced-charge EOF in these materials. CP is identified as a key phenomenon in CEC which also influences effective migration and the retention of charged analytes because the local intensity of CP inherently depends on applied field and mobile phase ionic strengths.
我们利用基于二氧化硅的颗粒和整体固定床,研究了毛细管电色谱(CEC)中电渗流(EOF)速度和流体动力学分散对施加电场和流动相离子强度变化的基本依赖性。这些多孔介质具有分层结构,其特征在于离散的颗粒内(骨架内)介孔和颗粒间(骨架间)大孔空间域。虽然大孔域包含准电中性电解质溶液,但介孔域的离子渗透选择性(电荷选择性)决定了电化学平衡(无叠加电场)时的同离子排斥和反离子富集,这取决于介孔尺度的电双层(EDL)重叠和表面电荷密度。在最一般条件下实现的这种可调节的局部电荷选择性传输构成了CEC中叠加电场引起的浓度极化(CP)的基础。CP分别表征了在含有阳离子选择性的基于二氧化硅的颗粒(或整体骨架)的固定床中,阳极和阴极界面处对流扩散边界层的形成,其电解质浓度分别降低(耗尽CP区)和增加(富集CP区)。CP起源于电场诱导的垂直于电荷选择性界面的耦合质量和电荷传输,并对CEC中的EOF动力学、流体动力学分散和分析物保留产生影响。在耗尽的CP区可以诱导出具有移动反离子空间电荷的次级EDL,从而在大孔域中导致感应电荷EOF。其特征在于平均EOF速度对施加场强的非线性依赖性以及与表面相切的强局部速度分量,这增强了横向孔尺度分散,从而减少了(轴向)区展宽。随机紧密球体堆积和整体材料的孔空间形态差异对这些材料中CP和感应电荷EOF的强度有至关重要的影响。CP被认为是CEC中的一个关键现象,它也影响带电分析物的有效迁移和保留,因为CP的局部强度本质上取决于施加电场和流动相离子强度。