Suppr超能文献

丝状肌动蛋白a与培养的黑色素瘤细胞的流变学特性

Filamin-a and rheological properties of cultured melanoma cells.

作者信息

Coughlin Mark F, Puig-de-Morales Marina, Bursac Predrag, Mellema Matthew, Millet Emil, Fredberg Jeffrey J

机构信息

Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

Biophys J. 2006 Mar 15;90(6):2199-205. doi: 10.1529/biophysj.105.061267. Epub 2005 Dec 30.

Abstract

Here we report the rheological properties of cultured hsFLNa (filamin-A)-expressing (FIL+) and hsFLNa-deficient (FIL-) melanoma cells. Using magnetic twisting cytometry over a wide range of probing frequencies, and targeting either cortical or deeper cytoskeletal structures, we found that differences in stiffness of FIL+ versus FIL- cells were remarkably small. When probed through deep cytoskeletal structures, FIL+ cells were, at most, 30% stiffer than FIL- cells, whereas when probed through more peripheral cytoskeletal structures FIL- cells were not different except at very high frequencies. The loss tangent, expressed as an effective cytoskeletal temperature, was systematically greater in FIL- than FIL+ cells, but these differences were small and showed that the FIL+ cells were only slightly closer to a solidlike state. To quantify cytoskeletal remodeling, we measured spontaneous motions of beads bound to cortical cytoskeletal structures and found no difference in FIL+ versus FIL- cells. Although mechanical differences between FIL+ and FIL- cells were evident both in cortical and deeper structures, these differences were far smaller than expected based on measurements of the rheology of purified actin-filamin solutions. These findings do not rule out an important contribution of filamin to the mechanical properties of the cortical cytoskeleton, but suggest that effects of filamin in the cortex are not exerted on the length scale of the probe used here. These findings would appear to rule out any important contribution of filamin to the bulk mechanical properties of the cytoplasm, however. Although filamin is present in the cytoplasm, it may be inactive, its mechanical effects may be small compared with other crosslinkers, or mechanical properties of the matrix may be dominated by an overriding role of cytoskeletal prestress.

摘要

在此,我们报告了表达人源细丝蛋白A(hsFLNa)(FIL+)和缺乏hsFLNa(FIL-)的培养黑色素瘤细胞的流变学特性。通过在广泛的探测频率范围内使用磁扭细胞术,并针对皮质或更深层的细胞骨架结构进行探测,我们发现FIL+细胞与FIL-细胞的硬度差异非常小。当通过深层细胞骨架结构进行探测时,FIL+细胞的硬度最多比FIL-细胞高30%,而当通过更多外周细胞骨架结构进行探测时,除了在非常高的频率下,FIL-细胞没有差异。以有效细胞骨架温度表示的损耗角正切在FIL-细胞中系统性地高于FIL+细胞,但这些差异很小,表明FIL+细胞仅略微更接近固态。为了量化细胞骨架重塑,我们测量了与皮质细胞骨架结构结合的珠子的自发运动,发现FIL+细胞与FIL-细胞之间没有差异。尽管FIL+和FIL-细胞在皮质和更深层结构中的力学差异都很明显,但基于对纯化肌动蛋白-细丝蛋白溶液流变学的测量,这些差异远小于预期。这些发现并不排除细丝蛋白对皮质细胞骨架力学特性的重要贡献,但表明细丝蛋白在皮质中的作用并非在此处使用的探针长度尺度上发挥。然而,这些发现似乎排除了细丝蛋白对细胞质整体力学特性的任何重要贡献。尽管细丝蛋白存在于细胞质中,但它可能是无活性的,与其他交联剂相比其力学效应可能很小,或者基质的力学特性可能由细胞骨架预应力的主导作用所决定。

相似文献

1
Filamin-a and rheological properties of cultured melanoma cells.
Biophys J. 2006 Mar 15;90(6):2199-205. doi: 10.1529/biophysj.105.061267. Epub 2005 Dec 30.
2
Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton.
J Muscle Res Cell Motil. 2002;23(5-6):525-34. doi: 10.1023/a:1023418725001.
3
Wnt5A activates the calpain-mediated cleavage of filamin A.
J Invest Dermatol. 2009 Jul;129(7):1782-9. doi: 10.1038/jid.2008.433. Epub 2009 Jan 29.
4
Filamin A is essential for active cell stiffening but not passive stiffening under external force.
Biophys J. 2009 May 20;96(10):4326-35. doi: 10.1016/j.bpj.2009.02.035.
5
Cross-linking molecules modify composite actin networks independently.
Phys Rev Lett. 2008 Sep 12;101(11):118102. doi: 10.1103/PhysRevLett.101.118102. Epub 2008 Sep 10.
6
Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks.
PLoS One. 2009;4(2):e4411. doi: 10.1371/journal.pone.0004411. Epub 2009 Feb 9.
9
Actin-binding protein filamin A is displayed on the surface of human neuroblastoma cells.
Cancer Sci. 2006 Dec;97(12):1359-65. doi: 10.1111/j.1349-7006.2006.00327.x. Epub 2006 Sep 25.
10
Distending stress of the cytoskeleton is a key determinant of cell rheological behavior.
Biochem Biophys Res Commun. 2004 Aug 27;321(3):617-22. doi: 10.1016/j.bbrc.2004.07.011.

引用本文的文献

1
Depletion of Changes Proteomic Profiling in Triple Negative Breast Cancer Cells.
Biomedicines. 2022 Aug 19;10(8):2021. doi: 10.3390/biomedicines10082021.
2
Nanomaterials in Animal Husbandry: Research and Prospects.
Front Genet. 2022 Jun 21;13:915911. doi: 10.3389/fgene.2022.915911. eCollection 2022.
3
Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses.
Int J Mol Sci. 2021 Sep 3;22(17):9587. doi: 10.3390/ijms22179587.
4
Filamin A and DRD2 expression in corticotrophinomas.
Pituitary. 2019 Apr;22(2):163-169. doi: 10.1007/s11102-019-00947-x.
5
Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness.
Biophys J. 2019 Feb 5;116(3):518-529. doi: 10.1016/j.bpj.2018.12.021. Epub 2019 Jan 7.
6
Filamin A phosphorylation by Akt promotes cell migration in response to arsenic.
Oncotarget. 2015 May 20;6(14):12009-19. doi: 10.18632/oncotarget.3617.
7
The dual role of filamin A in cancer: can't live with (too much of) it, can't live without it.
Endocr Relat Cancer. 2013 Nov 4;20(6):R341-56. doi: 10.1530/ERC-13-0364. Print 2013 Dec.
8
Stress transmission within the cell.
Compr Physiol. 2011 Jan;1(1):499-524. doi: 10.1002/cphy.c100019.
9
Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential.
Clin Exp Metastasis. 2013 Mar;30(3):237-50. doi: 10.1007/s10585-012-9531-z. Epub 2012 Sep 8.
10
Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells.
Cancer Res. 2010 Mar 1;70(5):2105-14. doi: 10.1158/0008-5472.CAN-08-1108. Epub 2010 Feb 23.

本文引用的文献

1
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.
2
Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics.
Am J Physiol Cell Physiol. 2004 Sep;287(3):C643-54. doi: 10.1152/ajpcell.00070.2004. Epub 2004 Jun 2.
3
Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells.
Am J Physiol Cell Physiol. 2004 Aug;287(2):C440-8. doi: 10.1152/ajpcell.00374.2003. Epub 2004 Apr 7.
4
Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell.
J Appl Physiol (1985). 2004 May;96(5):1701-13. doi: 10.1152/japplphysiol.01129.2003. Epub 2004 Jan 16.
5
Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress.
J Appl Physiol (1985). 2004 May;96(5):1600-5. doi: 10.1152/japplphysiol.00595.2003. Epub 2004 Jan 5.
6
Time scale and other invariants of integrative mechanical behavior in living cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041914. doi: 10.1103/PhysRevE.68.041914. Epub 2003 Oct 27.
7
The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks.
J Biol Chem. 2004 Jan 16;279(3):1819-26. doi: 10.1074/jbc.M306090200. Epub 2003 Nov 1.
9
Remodeling of the airway smooth muscle cell: are we built of glass?
Respir Physiol Neurobiol. 2003 Sep 16;137(2-3):109-24. doi: 10.1016/s1569-9048(03)00141-1.
10
Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells.
Am J Physiol Cell Physiol. 2003 Nov;285(5):C1082-90. doi: 10.1152/ajpcell.00159.2003. Epub 2003 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验